Relationship between solutions of discrete inverse and auxiliary problems for a hyperbolic equation

19 18

Authors

  • Saule Meldebekova ХҚТУ
  • Галитдин Баканов

Keywords:

Hyperbolic equation, discrete inverse problem, auxiliary discrete problem, properties of the solution

Abstract

. One-dimensional and multidimensional methods for solving inverse problems for a hyperbolic equation by the Gelfand-Levitan method lead to the numerical solution of Fredholm integral equations of the first and second kind. This paper examines the connection between a discrete inverse problem and solutions to a discrete auxiliary problem for a hyperbolic equation studied by the Gelfand-Levitan method. First, we present the formulations of the discrete inverse problem and the discrete auxiliary problem for the hyperbolic equation, as well as the properties of the grid functions that are solutions to these problems. Lemmas are proved about the structure of the grid function determined by the solution of the auxiliary discrete problem, and the connection of this grid function with the desired grid function, which is the solution to the discrete inverse problem. When proving the lemmas, the properties of the solution to the discrete auxiliary problem and the discrete analogue of the Dirac delta function are taken into account. A theorem showing the existence of a discrete inverse problem solution and its uniqueness is proved.

References

Alekseev A. S. Obratnye dinamicheskie zadachi sejsmiki // Nekotorye metody i algoritmy interpolyacii geofizicheskih dannyh. – M.: Nauka, 1967. - p. 9-84. (in Russian)

Kunetz G. Essai d’analyse de traces sismiques. // Geophysical Prospecting. – 1961. – Vol. 9. – p. 317-341.

Parijskij B. S. Ekonomicheskie metody chislennogo resheniya uravnenij v svertkah i sistem algebraicheskih uravnenij s teplicevymi matricami. – M.: VC AN SSSR. – 75 p. (in Russian)

Blagoveshchenskij A. S. O lokal'nom metode resheniya nestacionarnoj obratnoj zadachi dlya neodnorodnoj struny // Tr. Mat. in-ta. AN SSSR. – 1971. – t. 115. – p. 28-38. (in Russian)

Alekseev A. S., Dobrinskij V. I. Nekotorye voprosy prakticheskogo ispol'zovaniya obratnyh dinamicheskih zadach sejsmiki // Matematicheskie problemy geofiziki. – Novosibirsk: VC SO AN SSSR, 1995. – Vyp. 6, ch. 2. – p. 7-53. (in Russian)

Romanov V. G. On justification of the Gelfand–Levitan–Krein method for a two-dimensional inverse problem // Siberian Mathematical Journal. – 2021. – Т. 62. – №. 5. – p. 908-924.

Kabanikhin S. I., Novikov N. S., Shishlenin M. A. Gelfand-Levitan-Krein method in one-dimensional elasticity inverse problem //Journal of Physics: Conference Series. – IOP Publishing, 2021. – Т. 2092. – №. 1. – p. 012022.

Kabanikhin S., Shishlenin M., Novikov N. and Prokhoshin N. Spectral, Scattering and Dynamics: Gelfand–Levitan–Marchenko–Krein Equations //Mathematics. – 2023. – Т. 11. – №. 21. – p. 4458.

S.Kabanikhin, M.Shishlenin, G.Bakanov. Multidimensional analogue of Krein equation for the inverse acoustic problem // Abstracts of the VII World Congress of Turkic World Mathematicians (TWMS Congress-2023) – р.312.

Bektemessov M., Temirbekova L. Discretization of equations Gelfand-Levitan-Krein and regularization algorithms // Journal of Physics: Conference Series. – IOP Publishing, 2021. – Т. 2092. – №. 1. – p. 012015.

Temirbekov N.M., Kabanikhin S.I., Temirbekova L.N., Demeubayeva Zh.E. Gelfand-Levitan integral equation for solving coefficient inverse problem // International scientifically-technical journal herald to National Engineering Academy of the Republic of Kazakhstan, No. 3(85), (2022): p.158-167. https:/doi.org/10.47533/2020.1606-146X.184

Karimov Sh. T., Mamadalieva Sh. G. Reshenie koeffitsientnoy obratnoy zadachi dlya giperbolicheskogo uravnenie svedeniem eYo u uravneniyu Gelfanda-Levitana pervogo roda //Finland International Scientific Journal of Education, Social Science & Humanities. – 2022. – Т. 10. – №. 12. – p. 142-151. (in Russian)

Islamov E. R., Mamadalieva Sh. G. Reshenie koeffitsientnoy obratnoy zadachi dlya giperbolicheskogo uravnenie svedeniem eYo u uravneniyu Gelfanda-Levitana vtorogo roda //Finland International Scientific Journal of Education, Social Science & Humanities. – 2022. – Т. 10. – №. 12. – p. 399-404. (in Russian)

Alyibaev A. M. Regulyarizatsiya obratnoy zadachi s operatorom giperbolicheskogo tipa, gde vyirozhdaetsya nekorrektnoe uravnenie Volterra pervogo roda // Mezhdunarodnyiy zhurnal prikladnyih i fundamentalnyih issledovaniy. – 2022. – № 7 – p. 57-71. (in Russian)

Kabanihin S. I., Krivorot’ko O. I. Optimizatsionnyie metodyi resheniya obratnyih zadach immunologii i epidemiologii //Zhurnal vyichislitelnoy matematiki i matematicheskoy fiziki.– 2020. – Т. 60. – №. 4. – p. 590-600. (in Russian)

Penenko A. V. Metod Nyutona–Kantorovicha dlya resheniya obratnyih zadach identifikatsii istochnikov v modelyah produktsii–destruktsii s dannyimi tipa vremennyih ryadov //Sibirskiy zhurnal vyichislitelnoy matematiki. – 2019. – Т. 22. – №. 1. –p. 57-79. (in Russian)

Vatulyan A. O., Nesterov S. A. Reshenie obratnoy zadachi ob identifikatsii dvuh termomehanicheskih harakteristik funktsionalno-gradientnogo sterzhnya //Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mehanika. Informatika.– 2022. – Т. 22. – №. 2. – p. 180-195. (in Russian)

Konuk T., Shragge J. Modeling full-wavefield time-varying sea-surface effects on seismic data: A mimetic finite-difference approach //Geophysics. – 2020. – Т. 85. – №. 2. – p. T45-T55

Published

2024-12-30