The use of mobile applications that allow the use of ar technology in understanding the phenomena of physics
68 120
Keywords:
mobile applications, AR (augmented reality) technologies, physics training, visualization, interactive learning.Abstract
The article "The use of mobile applications that allow the use of AR (augmented reality) technology in understanding physics phenomena" provides an overview of modern mobile applications designed to enrich the educational process in the field of physics using augmented reality (AR). In addition, he examines the benefits of using AR, such as increasing student motivation, improving understanding of abstract physics concepts, and creating interactive learning environments. The article provides examples of popular applications that allow you to visualize physical phenomena, conduct virtual experiments and demonstrate complex physical concepts using smartphones and tablets. The article discusses various applications available on the market and provides detailed information about their functionality and benefits.
The article considers the following aspects: assessment of the role of AR technology in education and its impact on the educational process in physics; review of popular mobile applications capable of creating interactive and visual educational scenarios in AR to understand the phenomena of physics; analysis of the capabilities and limitations of each application, including accessibility, device compatibility and the quality of the educational content offered.
This article gives a complete picture of how modern mobile applications with AR technology can make learning physics fun, interactive and effective, and experimentally proves its effectiveness.
References
«Цифрландыру, ғылым және инновациялар есебінен технологиялық серпіліс», Қазақстан Республикасы Үкіметінің 2021 жылғы 12 қазандағы № 727 қаулысы.
Жармагамбетова Г. О., Абилтаев Д. С. «AR технологиясының даму бағыттары», Ахмет Байтұрсынов атындағы Қостанай өңірлік университеті, Молодой ученый Международный научный журнал № 21 (416) / 2022, , 690-992,
Number of Mobile Augmented Reality (AR) Active Users Worldwide from 2019 to 2024. Available online: https://www.statista. com/statistics/1098630/global-mobile-augmented-reality-ar-users/ (accessed on 6 January 2022).
Huang, Y., Li, H., Fong, R. Using Augmented Reality in early art education: A case study in Hong Kong kindergarten. Early Child Dev. Care 2016, 186, 879–894.
Cai, S., Chiang, F., Sun, Y., Lin, C., Lee, J. Applications of augmented reality-based natural interactive learning in magnetic field instruction. Interact. Learn. Environ. 2016, 25, 778–791.
Schmidt J. T. Preparing Students for Success in Blended Learning Environments: Future Oriented Motivation and Self-Regulation. Ph.D. Thesis, University of Southampton, Southampton, UK, 2007.
Efklides, A., Kuhl, J. Sorrentino, R. M. Trends and Prospects in Motivation Research; Springer: Dordrecht, The Netherlands, 2001.
Zafeiropoulou, M.., Volioti, C., Keramopoulos, E., Sapounidis T. Developing Physics Experiments Using Augmented Reality Game-Based Learning Approach: A Pilot Study in Primary School. Computers 2021, 10, 126.
Сембаев Т.М., Нурбекова Ж.К. «Оқу үрдісінде қолданылатын толықтырылған шынайылық қосымшаларын жасақтау орталарына талдау», Қазақ ұлттық қыздар педагогикалық университетінің Хабаршысы № 3(83), 2020, 81-88,
Fojtik R. “Mobile Technologies Education,” 3rd Cyprus International Conference on Educational Research, Volume 143, 2014.
Мухтарқызы К., Абильдинова Г.М. «Толықтырылған шынайылық мобильді қосымшаларының оқушылардың оқу мотивациясына әсері», Абай атындағы Қазақ ұлттық униврситетінің ХАБАРШЫСЫ 1 (401), 2023, 201-211,
Doni Ropawandi, Lilia Halim, and Hazrati Husnin, «Augmented Reality (AR) Technology-Based Learning: The Effect on Physics Learning during the COVID-19 Pandemic», International Journal of Information and Education Technology, Vol. 12, No. 2, February 2022.
Fleck, S., Simon, G. An Augmented Reality Environment for Astronomy Learning in Elementary Grades: An Exploratory Study. In Proceedings of the 25th Conference on l’Interaction Homme-Machine, Talence, France, 12–15 November 2013.
Pittman, C., La Viola J.J. PhyAR: Determining the Utility of Augmented Reality for Physics Education in the Classroom. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Atlanta, GA, USA, 22–26 March 2020, 760–761.
Li, H. Integrating ICT into the early childhood curriculum: Chinese principals’ views of the challenges and opportunities. Early Educ. Dev. 2006, 17, 467–487.
Akçayır, M.; Akçayır, G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ. Res. Rev. 2017, 20, 1–11.
"Sıfrlandyrý, ǵylym jáne ınovasıalar esebinen tehnologıalyq serpilis", Qazaqstan Respýblıkasy Úkimetiniń 2021 jylǵy 12 qazandaǵy № 727 qaýlysy.
Jarmagambetova G. O., Abıltaev D. S. "AR tehnologıasynyń damý baǵyttary", Ahmet Baıtursynov atyndaǵy Qostanaı óńirlik ýnıversıteti, Molodoı ýchenyı Mejdýnarodnyı naýchnyı jýrnal № 21 (416) / 2022, , 690-992.
Number of Mobile Augmented Reality (AR) Active Users Worldwide from 2019 to 2024. Available online: https://www.statista. com/statistics/1098630/global-mobile-augmented-reality-ar-users/ (accessed on 6 January 2022).
Huang, Y., Li, H., Fong, R. Using Augmented Reality in early art education: A case study in Hong Kong kindergarten. Early Child Dev. Care 2016, 186, 879–894.
Cai, S., Chiang, F., Sun, Y., Lin, C., Lee, J. Applications of augmented reality-based natural interactive learning in magnetic field instruction. Interact. Learn. Environ. 2016, 25, 778–791.
Schmidt J. T. Preparing Students for Success in Blended Learning Environments: Future Oriented Motivation and Self-Regulation. Ph.D. Thesis, University of Southampton, Southampton, UK, 2007.
Efklides, A., Kuhl, J. Sorrentino, R. M. Trends and Prospects in Motivation Research; Springer: Dordrecht, The Netherlands, 2001.
Zafeiropoulou, M.., Volioti, C., Keramopoulos, E., Sapounidis T. Developing Physics Experiments Using Augmented Reality Game-Based Learning Approach: A Pilot Study in Primary School. Computers 2021, 10, 126.
Sembaev T.M., Nýrbekova J.K. "Oqý úrdisinde qoldanylatyn tolyqtyrylǵan shynaıylyq qosymshalaryn jasaqtaý ortalaryna taldaý", Qazaq ulttyq qyzdar pedagogıkalyq ýnıversıtetiniń Habarshysy № 3(83), 2020, 81-88.
Fojtik R. “Mobile Technologies Education,” 3rd Cyprus International Conference on Educational Research, Volume 143, 2014.
ýhtarqyzy K., Abıldınova G.M. "Tolyqtyrylǵan shynaıylyq mobıldi qosymshalarynyń oqýshylardyń oqý motıvasıasyna áseri", Abaı atyndaǵy Qazaq ulttyq ýnıvrsıtetiniń HABARSHYSY 1 (401), 2023, 201-211.
Doni Ropawandi, Lilia Halim, and Hazrati Husnin, «Augmented Reality (AR) Technology-Based Learning: The Effect on Physics Learning during the COVID-19 Pandemic», International Journal of Information and Education Technology, Vol. 12, No. 2, February 2022.
Fleck, S., Simon, G. An Augmented Reality Environment for Astronomy Learning in Elementary Grades: An Exploratory Study. In Proceedings of the 25th Conference on l’Interaction Homme-Machine, Talence, France, 12–15 November 2013.
Pittman, C., La Viola J.J. PhyAR: Determining the Utility of Augmented Reality for Physics Education in the Classroom. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Atlanta, GA, USA, 22–26 March 2020, 760–761.
Li, H. Integrating ICT into the early childhood curriculum: Chinese principals’ views of the challenges and opportunities. Early Educ. Dev. 2006, 17, 467–487.
Akçayır, M.; Akçayır, G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ. Res. Rev. 2017, 20, 1–11.