Improving the Quality of Electronic Learning Tools when Studying the Discipline of Robotics Using a Mobile Application
19 20
Keywords:
Robotics, electronic learning tools, augmented reality, educational technologies, innovations in learning, professional competencies, digital education.Abstract
This academic article aims to enhance the pedagogical approach to teaching robotics by integrating electronic learning tools and augmented reality. The focus is on developing an effective methodology for improving the educational experience in robotics instruction.
The study's theoretical framework involved a thorough analysis of pertinent literature and offered insights into the complexities of teaching robotics. Significant focus was placed on comprehending the fundamental aspects of a sturdy educational framework in robotics.
The crucial function of digital learning devices in enhancing robotics education quality was emphasized. An in-depth analysis of diverse digital learning technologies appropriate for robotics instruction was conducted. Notably, notably, the study delves into the revolutionary capabilities of augmented reality in this educational context.
The study implemented a research methodology that involved a cohort of participants. The methodology was customized to integrate augmented reality into the teaching process, with the objective of improving theoretical comprehension and practical application. To achieve this aim, a dedicated electronic learning platform was utilized, specifically created for robotics education, which enhanced the traditional learning experience.
The experiment's results underwent thorough analysis, yielding valuable insights into the efficacy of the proposed methodology in augmenting robotics education's quality. The amalgamation of augmented reality in electronic learning tools demonstrated encouraging outcomes in cultivating a captivating and immersive learning environment for students pursuing robotics.
References
Зайцева С.А., Иванов В.В., Киселев В.С., Зубаков А.Ф. Развитие образовательной робототехники: проблемы и перспективы // Образование и наука. – 2022. – Т. 24. №2. – С. 84–115. https://doi.org/10.17853/1994-5639-2022-2-84-115
Руслякова Е.Е., Пустовойтова О.В., Киселёва Ю.П., Яковлева Л.А. Теория и практика использования робототехники в образовательном процессе // Высшее образование в России. –2019. – Т. 28. № 6. – С. 158–167. https://doi.org/10.31992/0869-3617-2019-28-6-158-167
Антипов Д.Н. Потенциал виртуальной среды в образовательной робототехнике // Молодой ученый. – 2018. – №31 (217). – С. 1–3.
Турашова Ш.П., Сейдуалы К.Б. Изучение робототехники с помощью мобильных приложений // Молодой ученый. – 2023. – №25 (472). – С. 36–40.
Кунанбаева С.С. Теория и практика современного иноязычного образования. – Алматы: Дом печати «Эдельвейс», 2010. – 339 с.
Аверьянов В. Динозавры. 4D Энциклопедия в дополненной реальности. – М.: ЛБ 24, 2017. – 601 c.
Выхристюк З. Виртуальность реальности. – М.: Издательские решения, 2020. – 962 c.
Кадубец Т. Воспитание школьников в педагогической среде виртуальной реальности. – М.: LAP Lambert Academic Publishing, 2014. – 176 c.
Chatzopoulos D., Bermejo C., Huang Z., Hui P. Mobile augmented reality survey: From where we are to where we go // IEEE Access. – 2017. Т. 5. – P. 6917–6950.
Park Y.J., Ro H., Han T.D., Deep-ChildAR bot: Educational activities and safety care augmented reality system with deep learning for preschool // Proceedings of the ACM SIGGRAPH Posters, Los Angeles. – 2019. – P. 26–27.
Yew A., Ong S., Nee A. Immersive augmented reality environment for the teleoperation of maintenance robots // Procedia Cirp. – 2017. – Vol. 61. – P. 305–310.
Brizzi F., Peppoloni L., Graziano A., Di S.E., Avizzano C.A., Ruffaldi E. Effects of augmented reality on the performance of teleoperated industrial assembly tasks in a robotic embodiment // IEEE Transactions on Human-Machine Systems. – 2017. – Т. 48. – №2. – P. 197–206.
REFERENCES
Zaiceva S.A., Ivanov V.V., Kiselev V.S., Zubakov A.F. Razvitie obrazovatelnoi robototehniki: problemy i perspektivy [Development of educational robotics: problems and prospects] // Obrazovanie i nauka. – 2022. – T. 24. №2. – S. 84–115. https://doi.org/10.17853/1994-5639-2022-2-84-115 [in Russian]
Rusliakova E.E., Pustovoitova O.V., Kiseliova Iu.P., Iakovleva L.A. Teoria i praktika ispolzovania robototehniki v obrazovatelnom processe [Theory and Practice of Using Robotics in Educational Process] // Vysshee obrazovanie v Rossii. –2019. – T. 28. № 6. – S. 158–167. https://doi.org/10.31992/0869-3617-2019-28-6-158-167 [in Russian]
Antipov D.N. Potencial virtualnoi sredy v obrazovatelnoi robototehnike [Theory and Practice of Using Robotics in Educational Process] // Molodoi uchenyi. – 2018. – №31 (217). – S. 1–3. [in Russian]
Turashova Sh.P., Seidualy K.B. Izuchenie robototehniki s pomoshiu mobilnyh prilojeniy [Studying robotics with the help of mobile applications] // Molodoi uchenyi. – 2023. – №25 (472). – S. 36–40. [in Russian]
Kunanbaeva S.S. Teoria i praktika sovremennogo inoiazychnogo obrazovania [Theory and practice of modern foreign language education]. – Almaty: Dom pechati «Edelveis», 2010. – 339 s. [in Russian]
Averianov V. Dinozavry. 4D enciklopedia v dopolnennoi realnosti [4D Encyclopedia in augmented reality]. – M.: LB 24, 2017. – 601 c. [in Russian]
Vyhristiuk Z. Virtualnost realnosti [Virtuality of reality]. – M.: Izdatelskie reshenia, 2020. – 962 c. [in Russian]
Kadubec T. Vospitanie shkolnikov v pedagogicheskoi srede virtualnoi realnosti [Education of schoolchildren in the pedagogical environment of virtual reality]. – M.: LAP Lambert Academic Publishing, 2014. – 176 c. [in Russian]
Chatzopoulos D., Bermejo C., Huang Z., Hui P. Mobile augmented reality survey: From where we are to where we go // IEEE Access. – 2017. T. 5. – P. 6917–6950.
Park Y.J., Ro H., Han T.D., Deep-ChildAR bot: Educational activities and safety care augmented reality system with deep learning for preschool // Proceedings of the ACM SIGGRAPH Posters, Los Angeles. – 2019. – P. 26–27.
Yew A., Ong S., Nee A. Immersive augmented reality environment for the teleoperation of maintenance robots // Procedia Cirp. – 2017. – Vol. 61. – P. 305–310.
Brizzi F., Peppoloni L., Graziano A., Di S.E., Avizzano C.A., Ruffaldi E. Effects of augmented reality on the performance of teleoperated industrial assembly tasks in a robotic embodiment // IEEE Transactions on Human-Machine Systems. – 2017. – T. 48. – №2. – P. 197–206.