Experimental study of the dissolution of carbonate samples with acid solutions

Authors

  • Zh.K. Akasheva Satbayev University
  • D.A. Bolysbek Al-Farabi KazNU
  • G.I. Isaev Khoja Akhmet Yassawi International Kazakh-Turkish University
  • B.B. Asilbekov Satbayev University

Keywords:

rock dissolution, solution rate, mineral composition, permeability increase, calcite, hydrochloric acid, Darcy's law

Abstract

In this paper, we study the interaction of eight carbonate core samples (the same size, almost entirely composed of calcite) with hydrochloric acid solutions with concentrations of 12% and 18% at solution flow rates of 1, 2, 4, and 8 ml/min, respectively. During flooding experiments, the flow rate of acid solutions unevenly affected the final permeability and breakthrough pore volumes. In the case of injection of a 12% HCl solution, an average of almost 20% more acid solution was required for a breakthrough comparing to the injection of a 18% HCl solution, although in both cases the injection was carried out at the same rates. It was found that the largest increases in permeability are achieved mainly at high flow rates of the solution. Speaking of the 18% HCl solution during flooding experiments, almost identical pore volumes of solution were required to breakthrough for all flow rates; also, with an increase in the injection rate, a progressive increase in permeability was observed.
The results of laboratory studies can be useful in the treatment of near wellbore zones and CO2 sequestration on a large scale for an approximate assessment of the final permeability of the treated zone and the required volumes of acid solutions.

Author Biographies

Zh.K. Akasheva, Satbayev University

1MSc, PhD-student at Satbayev University

D.A. Bolysbek, Al-Farabi KazNU

2MSc, PhD-student at Al-Farabi KazNU

G.I. Isaev, Khoja Akhmet Yassawi International Kazakh-Turkish University

3Candidate of technical sciences, head of department of Biology at Akhmet Yassawi International Kazakh-Turkish University

B.B. Asilbekov, Satbayev University

4PhD, head of laboratory computational modeling and information technologies at Satbayev University

References

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Christopher N. Fredd and H. Scott Fogler. Influence of Transport and Reaction on Wormhole Formation in Porous Media. AIChE Journal. Vol. 44, No. 9. 1998.

Turegeldieva K.A., Zhapbasbayev U.K., Assilbekov B.K., Zolotukhin A.B. (2016) Matrix acidizing modeling of near-wellbore with reduced reservoir properties (part 2), Neftyanoe Khozyaystvo - Oil Industry, 4: 108-110.

Colón C.F.J., Oelkers E.H., Schott J. (2004) Experimental investigation of the effect of dissolution on sandstone permeability, porosity, and reactive surface area, Geochimica et Cosmochimica Acta, 68 (4):805-817. DOI: 10.1016/j.gca.2003.06.002.

Li, W., Einstein,H. H., & Germaine, J. T. (2019). An Experimental Study of Matrix Dissolution and Wormhole Formation Using Gypsum Core Flood Tests: 1. Permeability Evolution and Wormhole Geometry Analysis. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2018JB017238.

Piyang Liu, Xiaoxia Ren, Liang Kong, Jun Yao. Three-dimensional simulation of acidizing process in carbonate rocks using the Darcy–Forchheimer framework. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2020, 75, pp.48. 10.2516/ogst/2020035. hal-02899135.

Luhmann, Andrew J., Kong, Xiang-Zhao, Tutolo, Benjamin M., Garapati, Nagasree, Bagley, Brian C., Saar, Martin O., Seyfried Jr., William E., Experimental dissolution of dolomite by CO2-charged brine at 100℃ and 150 bar: Evolution of porosity, permeability, and reactive surface area, Chemical Geology (2014), doi: 10.1016/j.chemgeo.2014.05.001.

Molins, S., D. Trebotich, G. H. Miller, and C. I. Steefel (2017), Mineralogical and transport controls on the evolution of porous media texture using direct numerical simulation, Water Resour. Res., 53, 3645–3661, doi:10.1002/2016WR020323.

Иванов М. К. [и др.]. Петрофизические методы исследования кернового материала / М. К. Иванов, Ю. К. Бурлин, Г. А. Калмыков, Е. Е. Карнюшина, Н. И. Коробова, Издательство Московского университета, 2008.

Петерсилье В. И., Проскурина В. И., Яценко Г. Г. Методические рекомендации по подсчету геологических запасов нефти и газа объемным методом / В. И. Петерсилье, В. И. Проскурина, Г. Г. Яценко, Москва-Тверь: ВНИГНИ, НПЦ «Тверьгеофизика», 2003.

Glasbergen G., Kalia N., Talbot M. The optimum injection rate for wormhole propagation: Myth or reality? 2009.

Антонов С. М. Взаимодействие вязких растворов HCl в карбонатных породах и их фильтрация в модели пласта / С. М. Антонов, Екатеринбург: : дис. … канд. хим. наук: 02.00.04 / Тюменский государственный университет, 2017. 148 c.

REFERENCES

Christopher N. Fredd and H. Scott Fogler. Influence of Transport and Reaction on Wormhole Formation in Porous Media. AIChE Journal. Vol. 44, No. 9. 1998.

Turegeldieva K.A., Zhapbasbayev U.K., Assilbekov B.K., Zolotukhin A.B. (2016) Matrix acidizing modeling of near-wellbore with reduced reservoir properties (part 2), Neftyanoe Khozyaystvo - Oil Industry, 4: 108-110.

Colón C.F.J., Oelkers E.H., Schott J. (2004) Experimental investigation of the effect of dissolution on sandstone permeability, porosity, and reactive surface area, Geochimica et Cosmochimica Acta, 68 (4):805-817. DOI: 10.1016/j.gca.2003.06.002.

Li, W., Einstein,H. H., & Germaine, J. T. (2019). An Experimental Study of Matrix Dissolution and Wormhole Formation Using Gypsum Core Flood Tests: 1. Permeability Evolution

and Wormhole Geometry Analysis. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2018JB017238.

Piyang Liu, Xiaoxia Ren, Liang Kong, Jun Yao. Three-dimensional simulation of acidizing process in carbonate rocks using the Darcy–Forchheimer framework. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2020, 75, pp.48. 10.2516/ogst/2020035. hal-02899135.

Luhmann, Andrew J., Kong, Xiang-Zhao, Tutolo, Benjamin M., Garapati, Nagasree, Bagley, Brian C., Saar, Martin O., Seyfried Jr., William E., Experimental dissolution of dolomite by CO2-charged brine at 100℃ and 150 bar: Evolution of porosity, permeability, and reactive surface area, Chemical Geology (2014), doi: 10.1016/j.chemgeo.2014.05.001.

Molins, S., D. Trebotich, G. H. Miller, and C. I. Steefel (2017), Mineralogical and transport controls on the evolution of porous media texture using direct numerical simulation, Water Resour. Res., 53, 3645–3661, doi:10.1002/2016WR020323.

Ivanov M. K [i dr.]. Petrofizicheskie metody issledovaniya kernovogo materiala. [Petrophysical methods of core material research] / М. К. Ivanov, Ю. К. Burlin, G. A. Kalmykov, Е. Е. Korniushina, N. I. Korobova, Izdatel’stvo Moskovskogo universiteta, 2008.

Petersilie V. I., Proskutina V. I., Yatsenko G. G. Metodicheskie rekomendatcii po podschetu geologicheskih zapasov nefti I gaza obiemnym metododm [Methodological recommendations for calculating geological reserves of oil and gas by the volumetric method] / V. I. Petersilie, V. I. Proskurina, G. G. Yatsenko, Moskva-Tver’: VNIGNI, NPTC «Tver’geofizika», 2003.

Glasbergen G., Kalia N., Talbot M. The optimum injection rate for wormhole propagation: Myth or reality? 2009.

Antonov S. M. Vzaimodeistvie viazkih rastvorov HCI v korbanatnyh porodah I ih fil’traciya v modeli plasta [Interaction of viscous HCl solutions in carbonate rocks and their filtration in the reservoir model] / S. M. Antonov, Ekaterinburg: dis. … kand. him. nauk: 02.00.04 / Tiumenskii gosudarstvennyi universitet, 2017. 148 p.

Published

2022-09-30