Кескін деректеріндегі объектілерді анықтау және жіктеу үшін қолданылатын алгоритмдерді зерттеу және қолдану
62 38
Кілт сөздер:
Кескінді цифрлық өңдеу, Обьект тану, OpenCV, YOLO, Haar әдісіАңдатпа
Бұл мақалада цифрлық кескінді өңдеу арқылы объектілерді анықтау саласында кеңінен қолданылатын YOLO (You Only Look Once) әдісі мен OpenCV кітапханасы арқылы жүзеге асырылған Haar мүмкіндіктеріне негізделген каскадты жіктеуіш әдісінің көрсеткіштері салыстырылып зерттеледі. YOLO - терең оқытуға негізделген әдіс және әсіресе нақты уақыттағы нысанды анықтау және тану қолданбаларында ерекшеленеді. Хаар әдісі, керісінше, дәстүрлі тәсілмен белгілі бір мүмкіндіктерге негізделген жылдам анықтау мүмкіндігіне ие. Дегенмен, бұл екі әдіс арасында айтарлықтай өнімділік айырмашылықтары бар. Тәжірибелер мен өнімділікті талдау нәтижесінде YOLO нысанды анықтау тапсырмаларында жоғары дәлдік жылдамдықтары мен нақты уақыттағы өңдеу жылдамдығын ұсынатыны анықталды. Зерттеудегі қолданылған әдістердегі кодтар цифрлық кескінді өңдеу бағытында жаңадан зертеушілер үшін үлкен көмегі тиеді. YOLO үлкен және күрделі деректер жиындарында GPU мүмкіндітерін қолдануымен жұмыс істеу арқылы жоғары тиімділікті қамтамасыз ететіндігі көрсетілген. Сонымен қатар, YOLO-ның әртүрлі нұсқаларымен жүргізілген эксперименттер (мысалы, YOLOv4, YOLOv5, YOLOv7) бұл нақты уақыттағы қолданбалар үшін ең қолайлы нұсқалардың бірі екенін көрсетті, әсіресе оның төмен кідіріс және жоғары дәлдік көрсеткіштері арқасында.
Әдебиеттер тізімі
Herui Wang. Application of Computer Vision Algorithms in Image Recognition and Object Detection. Academic Journal of Computing & Information Science (2024), Vol. 7, Issue 1: 59-64. https://doi.org/10.25236/AJCIS.2024.070109.
Preeti, Sharma., Rajeev, Kamal, Sharma., Isha, Kansal., Rajeev, Kumar., Rana, Gill. An Extensive Review on Image Classification Techniques for Expert Systems. (11 Dec 2023). doi: 10.2174/0123520965282357231123093259
Archana, R., Jeevaraj, P.S.E. Deep learning models for digital image processing: a review. Artif Intell Rev 57, 11 (2024). https://doi.org/10.1007/s10462-023-10631-z
Rahul Kumar Dwivedi, Bhanu Prakash, Md Sheesh, Gulrez Akhter, Kartik Meghwal,"ADVANCEMENTS IN DEEP LEARNING OBJECT DETECTION: A COMPREHENSIVE RESEARCH REVIEW ", Futuristic Trends in Artificial Intelligence Volume 3 Book 8,IIP Series, Volume 3, May, 2024, Page no.142-152, e-ISBN: 978-93-6252-759-2, DOI/Link: https://www.doi.org/10.58532/V3BGAI8P2CH6
Juan Li, Pan Jiang, Qing An, Gai-Ge Wang, Hua-Feng Kong. Medical image identification methods: A review, Computers in Biology and Medicine, Volume 169, 2024, 107777, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2023.107777.
Sneha, K., Verma. 6. Comparative Analysis of Image Classification Algorithms. International Journal for Research in Applied Science and Engineering Technology, (2023). doi: 10.22214/ijraset.2023.57662 7. Burger, W., & Burge, M. J. (2022). Digital image processing: An algorithmic introduction. Springer Nature. 8. Petrou, M. M., & Kamata, S. I. (2021). Image processing: dealing with texture. John Wiley & Sons. 9. Bailey, D. G. (2023). Design for embedded image processing on FPGAs. John Wiley & Sons. 10. Van der Velden, B. H., Kuijf, H. J., Gilhuijs, K. G., & Viergever, M. A. (2022). Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Medical Image Analysis, 79, 102470. 11. Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., ... & Gao, W. (2021). Pre-trained image processing transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12299-12310). 12. Qiao, Qi., Azlin, Ahmad., Wang, Ke. 7. Image classification based on few-shot learning algorithms: a review. Indonesian Journal of Electrical Engineering and Computer Science, (2024). doi: 10.11591/ijeecs.v35.i2.pp933-943 13. D., K., Gupta. A Review: Object Detection Algorithms. (2023). doi: 10.1109/ICSCCC58608.2023.10176865 14. Vandna Bhalla. A Review on Neural Approaches in Image Processing Applications. International Journal For Science Technology And Engineering, (2023). doi: 10.22214/ijraset.2023.49851 15. Mandeep, Kaur. A Review on Classification of Images with Convolutional Neural Networks. International Journal For Science Technology And Engineering, (2023). doi: 10.22214/ijraset.2023.54704 16. M. Letavay, M. Bažant and P. Tuček, "Object Detection Algorithms - A Review," 2023 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO), Crete, Greece, 2023, pp. 31-44, doi: 10.1109/ICCAIRO58903.2023.00014. 17. Tang W. Review of Image Classification Algorithms Based on Graph Convolutional Networks. EAI Endorsed Trans AI Robotics [Internet]. 2023 Jul. 6 [cited 2024 Sep. 8];2. Available from: https://publications.eai.eu/index.php/airo/article/view/3462 18. D. J. Dsouza and A. P. Rodrigues, "A Comparative Study of Feature Extraction Methods in Image Classification Using Convolution Neural Network Model," 2023 International Conference on Recent Advances in Information Technology for Sustainable Development (ICRAIS), Manipal, India, 2023, pp. 77-82, doi: 10.1109/ICRAIS59684.2023.10367096. 19. Martinus, Grady, Naftali., Jason, Sebastian, Sulistyawan., Kelvin, Julian. 14. Comparison of Object Detection Algorithms for Street-level Objects. arXiv.org, (2022). doi: 10.48550/arXiv.2208.11315 20. Xijun, Liang., ShengHao, DU., Yuze, Duan., Yuelin, Chen., Kaili, Zhu., Yitong, Yin., Ling, Jian. 16. Kernel-based Algorithms for Image Classification: A Review. (2023). doi: 10.21203/rs.3.rs-3576956/v1 21. Ngugi, L. C., Abelwahab, M., & Abo-Zahhad, M. (2021). Recent advances in image processing techniques for automated leaf pest and disease recognition–A review. Information processing in agriculture, 8(1), 27-51. 22. Kim, G., Kwon, T., & Ye, J. C. (2022). Diffusionclip: Text-guided diffusion models for robust image manipulation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2426-2435). 23. Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., & Cohen-Or, D. (2021). Designing an encoder for stylegan image manipulation. ACM Transactions on Graphics (TOG), 40(4), 1-14.