Point symmetries of the Lie of the complex Ginzburg-Landau equation

74 107 0

Yazarlar

  • D. Baltabayeva Khoja Akhmet Yassawi International Kazakh-Turkish University
  • Sh. Kurbanbekov Khoja Akhmet Yassawi International Kazakh-Turkish University

Anahtar Kelimeler:

Soliton theory, symmetry, nonlinear optics, Gauss potential, Lie algebra.

Özet

A soliton is a nonlinear single moving wave that retains its shape and velocity during its movement, that is, it is a constant formation, and when it collides with isolated waves similar to itself, the phenomenon of a mutual phase shift of two waves occurs, that is, the only result of the interaction of solitons may be some kind of shift in phase.

In this paper, we will study the distribution of the soliton constant in the complex Ginzburg-Landau equation (CGL) with a nonlinear regime that focuses on itself in the presence of a symmetric Gaussian potential. For many decades, nonlinear systems have attracted researchers theoretically and experimentally with their rich dynamic characteristics. Such nonlinear systems can be conservative (closed) or dissipative (open), and both support solitons. A soliton is nothing but a constant profile of light pulses in an optical system. In the case of a dissipative nonlinear system, in addition to dispersion and nonlinear equilibrium, it is possible to continuously propagate a light pulse or soliton to achieve a balance between dissipation (loss) and gain. This means that a dissipative system cannot support continuous families of solitons similar to conservative systems. In other words, in a dissipative system, the distribution of solitons can be determined by the parameters of the system, while in a conservative system it is determined by the input optical pulse. This increases the experimental feasibility of determining the area of a stable soliton in a dissipative system by simply manipulating the system.

Referanslar

ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР ТІЗІМІ

Gubanov V.N. Soliton theory // Physical Review. Moskva: 2011. Vol. 65. – P. 26–35.

Hohler G., Fujimori A., Kuhn J., The discrete nonlinear Schrodinger equa-tion // Springer Tracts in Modern Physics. – 2009. Vol.415. – P. 3–8.

Ablowitz M.J., Primari B., Trubatch A.D. Discrete and continuous Nonlinear Schrodinger equation // Department of Applied Mathematics. – 2001. Vol.154. – P. 16–27.

Борисов А.Б., Киселев В.В. Двумерные и трехмерные топологические дефекты, солитоны и текстуры в магнетиках. – М.: ФИЗМАТЛИТ, – 2022. – 456 с.

М.J. Ablowitz (1971), Applications of slowly varying nonlinear dispersive wave theories, Stud. Appl. M ath., 50, pp. 329–344

Новикова О.В. Исследование комплекснозначного нелинейного уравнения в частных производных // Вестник Балтийского федерального университета им. И. Канта. Вып. 4: Физико-математические науки. – 2012. – С. 160–166. Калининград: Изд-во БФУ им. И. Канта, 2012.

N. Ахмедиев, А. Анкевич, Диссипативные солитоны, Лекционные заметки по физике, Springer, Berlin. – 2005.

Смелов М.В. Приёмопередатчик электромагнитных солитонов // Физическая мысль России. – 1998. № 2. – С. 31.

Н.Н. Розанов Мир лазерных солитонов // электронный журнал – «Природа» №6, – 2007.

Глухов Н.Д. Настоящее и будущее солитонов // электронная библиотека «Литмир» –2014.

Таттибеков К.С. Получение солитонов в магнитоупругих моделях методом Хироты.– Таразский государственный педагогический институт, Казахстан, – 2015.

Anderson R.L., Ibragimov N.H. Lie-Backlunds transformations in Applications // Society for Industrial and applied Mathematics. – 1979. Vol.135. – P. 37–52.

Liu H., Li J. Lie symmetry analysis and exact solutions for the short pulse equation // Nonlinear Anal., Theory Methods Appl. – 2009.Vol.85. – P. 71–75.

Ibragimov N.H. A new conservation theorem // Math. Anal.Appl.-2007.Vol.333. – P.311-328.

J.B.Sudharsan, V.K. Chandraseker, K.Manikandan,D. Aravinthan,Dynamics of stable solitons in Complex Ginzburg-Landau equation with PT- symmetric Gaussian potential // Optik Optics. – 2022. Vol.268.

Ibragimov N.H. Lie Group Analysis classical heritage // ALGA Publications. – 2004.Vol.414. –P. 56–70.

REFERENCES

Gubanov V.N. Soliton theory Physical Review- Moskva: 2011. – Vol.65. – P. 26–35.

Hohler G., Fujimori A., Kuhn J., The discrete nonlinear Schrodinger equation // Springer Tracts in Modern Physics. – 2009. Vol.415. – P. 3–8.

Ablowitz M.J., Primari B., Trubatch A.D. Discrete and continuous Nonlinear Schrodinger equation // Department of Applied Mathematics. – 2001. Vol.154. – P. 16–27.

Borisov A.B., Kiselev V.V. Dvumernye i trekhmernye topologicheskie defekty, solitony i tekstury v magnetikah. [Two-dimensional and three-dimensional topological defects, solitons and textures in magnets] – M.: FIZMATLIT, – 2022. – P. 456. [in Russian]

М.J. Ablowitz (1971), Applications of slowly varying nonlinear dispersive wave theories, Stud. Appl. M ath., 50, pp. 329–344.

Novikova O.V. Issledovanie kompleksnoznachnogo nelinejnogo uravneniya v chastnyh proizvodnyh [Investigation of a complex-valued nonlinear partial differential equation] // Vestnik Baltijskogo federal'nogo universiteta im. I. Kanta. Vyp. 4: Fiziko-matematicheskie nauki. – 2012. – S. 160–166. Kaliningrad: Izd-vo BFU im. I. Kanta, – 2012. [in Russian]

N. Ahmediev, A. Ankevich, Dissipativnye solitony, Lekcionnye zametki po fizike. [Dissipative solitons, Lecture notes on physics] Springer, Berlin – 2005. [in Russian]

Smelov M.V. Priyomoperedatchik elektromagnitnyh solitonov [Electromagnetic soliton transceiver] // Fizicheskaya mysl' Rossii. – 1998. – № 2. S. 31. [in Russian]

N.N. Rozanov Mir lazernyh solitonov [The world of laser solitons] // electronic journal – «Priroda» №6, – 2007. [in Russian]

Gluhov N.D. Nastoyashchee i budushchee solitonov [The present and future of solitons] // electronic library «Litmir» – 2014. [in Russian]

Tattibekov K.S. Poluchenie solitonov v magnitouprugih modelyah metodom Hiroty . [Obtaining solitons in magnetoelastic models by the Hirota method] / Tarazskij gosudarstvennyj pedagogicheskij institut, Kazakhstan – 2015. [in Russian]

Anderson R.L., Ibragimov N.H. Lie-Backlunds transformations in Applications // Society for Industrial and applied Mathematics. – 1979. Vol.135. – P. 37–52.

Liu H., Li J. Lie symmetry analysis and exact solutions for the short pulse equation // Nonlinear Anal., Theory Methods Appl. – 2009. Vol.85. – P. 71–75.

Ibragimov N.H. A new conservation theorem // Math. Anal.Appl. – 2007. –Vol.333. – P. 311–328.

J.B.Sudharsan, V.K. Chandraseker, K.Manikandan, D. Aravinthan. Dynamics of stable solitons in Complex Ginzburg-Landau equation with PT-symmetric Gaussian potential // Optik Optics.–2022. – Vol.268.

Ibragimov N.H. Lie Group Analysis classical heritage // ALGA Publications. – 2004. –Vol.414. – P. 56–70.

Yayınlanmış

2023-06-30