Analysis of the feasibility of the axiomatic principles of statistical physics

136 89 0

Yazarlar

  • Ye. Dossymov Khoja Akhmet Yassawi International Kazakh-Turkish University
  • D. Makhmudov Khoja Akhmet Yassawi International Kazakh-Turkish University

Anahtar Kelimeler:

Research, model, simulation, computer simulation, statistical physics, axiom.

Özet

Analyzing scientific works and researches in this article, we were convinced that today, in accordance with modern requirements, there is still a need to find a solution to the methodological features of teaching statistical physics in higher educational institutions, the methods and ways of organizing educational activities that form the interest of students.

In order to realize the possibilities of statistical physics in higher educational institutions, the purpose, methods and content of teaching it as a subject should be interdisciplinary in accordance with the knowledge and skills of the student in special subjects. Therefore, in the creation of a methodological system of teaching statistical physics in a professional direction in higher education organizations, it is important to create opportunities for the development of visual intuitive foundations and practical orientation, to accept concepts, conclusions and problems related to the future profession of the learner with ways of thinking, while implementing interdisciplinary communication with special subjects.

Thus, the contradiction between the need to teach statistical physics in a professional direction and its unsatisfactory solution in practice has become the reason for the relevance of the research topic. In order to train future professionals, the content of the statistical physics course should be selected in the direction of forming the methodological skills necessary for the future professional activities of the students. All of the above was the basis for choosing the research topic "Creating the interest of students by using innovative methods in the teaching of the statistical physics course" and determining its importance. The purpose of the work: to improve the teaching management system at different stages of the lesson, to strengthen the motivation to study, to increase the quality of education and training, to increase the level of preparation of students in the subject of statistical physics.

Referanslar

ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР ТІЗІМІ

Heisenberg W.Zur Theorie des Ferromagnetismus // Zeitschrift fur Physik. – 1928. – Sept. – Vol. 49, no. 9/10. – P. 619–636.

Baxter R.J. Partition function of the Eight-Vertex lattice model // Annals of Physics. – 1972. – Т. 70, № 1. – Р. 193–228.

Baxter R.J. One-dimensional anisotropic Heisenberg chain // Annals of Physics. – 1972. – Т. 70, № 2. – Р. 323–337.

Тахтаджян Л.А., Фаддеев Л.Д. Квантовый метод обратной задачи и XYZ модель Гейзенберга // УМН. – 1979. – Т. 34, 5(209). – С. 13–63.

Изюмов Ю.А., Скрябин Ю.Н. Статистическая механика магнитоупорядоченных систем. – М.: Наука, 1987. – 264 с.

Tsilevich N.V. Spectral properties of the periodic Coxeter Laplacian in the two-row ferromagnetic case // Зап. научн. сем. ПОМИ. – 2010. – Vol. 378. – P. 111–132.

Tsilevich N.V. On the behavior of the periodic Coxeter Laplacian in some representations related to the antiferromagnetic asymptotic mode and continual limits // Зап. научн. сем. ПОМИ.– 2011. – Vol. 390. – P. 286–298.

Vershik A.M. Statistical mechanics of combinatorial partitions, and their limit shapes. // Funct. Anal. Appl. – 1996. – Vol. 30. – P. 90–105.

Вершик А.М., Павлов Д.А. Численные эксперименты в задачах асимптотической теории представлений // Зап. научн. сем. ПОМИ. – 2009. – Т. 373. – С. 77–93.

Rost H. Non-equilibrium behaviour of a many particle process: Density profile and local equilibria // Probability Theory and Related Fields. – 1981. – Vol. 58, no. 1. – P. 41–53.

Вершик А.М., Керов С.В. Асимптотика максимальной и типичной размерностей неприводимых представлений симметрической группы // Функциональный анализ и его приложения. – 1985. – Т. 19, № 1. – С. 25–36.

Cerf R., Kenyon R. The Low-Temperature Expansion of the Wulff Crystal in the 3D Ising Model // Communications in Mathematical Physics. – 2001. – Vol. 222, no. 1. – P. 147–179.100

Боголюбов Н.М. Перечисление плоских разбиений и алгебраический анзац Бете // ТМФ. – 2007. – Т. 150, № 2. – С. 193–203.

Feynman R.P., Hibbs A.R. Quantum Mechanics and PathIntegrals. – McGraw–Hill College, 1965. – 365 p.

Hoyle F., Narlikar J.V. Cosmological Models in a Conformally Invariant Gravitational Theory–II: A New Model // Monthly Notices of the Royal Astronomical Society. – 1972. – Vol. 155, no. 3. – P. 323–335.

Gersch H.A. Feynman’s relativistic chessboard as an Ising model // Int. J. Theor. Phys. – 1981. – Vol. 20, no. 7. – P. 491–501.

REFERENCES

Heisenberg W.Zur Theorie des Ferromagnetismus // Zeitschrift fur Physik. – 1928. – Sept. – Vol. 49, no. 9/10. – P. 619–636.

Baxter R.J. Partition function of the Eight-Vertex lattice model // Annals of Physics. – 1972. – T. 70, № 1. – P. 193–228.

Baxter R.J. One-dimensional anisotropic Heisenberg chain // Annals of Physics. – 1972. – T. 70, № 2. – Р. 323–337.

Tahtadzhyan L.A., Faddeev L.D., Kvantovyj metod obratnoj zadachi i XYZ model' Gejzenberga [The quantum method of the inverse problem and the XYZ Heisenberg model]. // UMN. – 1979. – T. 34, 5 (209). – S. 13–63. [in Russian].

Izyumov YU.A., Skryabin YU.N. Statisticheskaya mekhanika magnitouporyadochen nyh sistem [Statistical mechanics of magnetically ordered systems]. – M.: Nauka, 1987. – 264 s. [in Russian].

Tsilevich N.V. Spectral properties of the periodic Coxeter Laplacian in the two-row ferromagnetic case // Zap. nauchn. sem. POMI. – 2010. – Vol. 378. – P. 111–132.

Tsilevich N.V. On the behavior of the periodic Coxeter Laplacian in some represen tations related to the antiferromagnetic asymptotic mode and continual limits // Zap. nauchn. sem. POMI. – 2011. – Vol. 390. – P. 286–298.

Vershik A.M. Statistical mechanics of combinatorial partitions, and their limit shapes. // Funct. Anal. Appl. – 1996. – Vol. 30. – P. 90–105.

Vershik A.M., Pavlov D.A. Chislennye eksperimenty v zadachah asimptoti cheskoj teorii predstavlenij [Numerical experiments in problems of asymptotic representation theory]. // Zap. nauchn. sem. POMI. – 2009. – T. 373. –S. 77–93. [in Russian].

Rost H. Non-equilibrium behaviour of a many particle process: Density profile and local equilibria // Probability Theory and Related Fields. – 1981. – Vol. 58, no. 1. – P. 41–53.

Vershik A.M., Kerov S.V. Asimptotika maksimal'noj i tipichnoj razmerno stej neprivodimyh predstavlenij simmetricheskoj gruppy [Asymptotics of maximal and typical dimensions of irreducible representations of a symmetric group]. // Funkcional' nyj analiz i ego prilozheniya. – 1985. – T. 19, № 1. – S. 25–36. [in Russian].

Cerf R., Kenyon R. The Low-Temperature Expansion of the Wulff Crystal in the 3D Ising Model // Communications in Mathematical Physics. – 2001. – Vol. 222, no. 1. – P. 147–179.100

Bogolyubov N.M. Perechislenie ploskih razbienij i algebraicheskij anzac Bete [Enumeration of plane partitions and the algebraic Bethe ansatz]. // TMF. – 2007. – T. 150, № 2. – S. 193–203. [in Russian].

Feynman R.P., Hibbs A.R. Quantum Mechanics and PathIntegrals. – McGraw-Hill College, 1965. – 365 P.

Hoyle F., Narlikar J.V. Cosmological Models in a Conformally Invariant Gravi tational Theory–II: A New Model // Monthly Notices of the Royal Astronomical Society. – 1972. – Vol. 155, no. 3. – P. 323–335.

Gersch H.A. Feynman’s relativistic chessboard as an Ising model // Int. J. Theor. Phys. – 1981. – Vol. 20, no. 7. – P. 491–501.

Yayınlanmış

2022-12-30