КОЭФФИЦИЕНТІ БӨЛІКТІ – ТҰРАҚТЫ ЖЫЛУӨТКІЗГІШТІК ТЕҢДЕУ ҮШІН БАСТАПҚЫ – ШЕТТІК ЕСЕПТЕР

263 132

Авторлар

  • Ү.Қ.ҚОЙЛЫШОВ
  • М.А.САДЫБЕКОВ

Аңдатпа

Коэффициенттері үзілісті жылуөткізгіштік есептері  ұзақ уақыт бойы жақсы зерттелген.

Біздің жұмысымызға тақырыптар жағынан ең жақын туындыларды [1-5]  атап өткен жөн. А.А.Самарскийдің еңбегінде [1] Грин функциясы және жылу потенциалдары әдісін қолдана отырып, коэффициенттері үзілісті жылуөткізгіштік  теңдеуі үшін бірінші  бастапқы- шекаралық есептің қисындылығы  дәлелденді. Ал қазақстандық математиктер  Е.И. Ким және Б. Б. Баймұхановтың еңбегінде [2] потенциалдар әдісімен, интегралдық теңдеуге келтіре отырып, жартылай  кеңістікте үзілісті жылуөткізгіштік коэффициенті бар екі өлшемді жылуөткізгіштік  теңдеу үшін  бірінші  бастапқы -шекаралық есептің қисындылығы дәлелденген. [3-5]  жұмыстарда жылу потенциалдарын  қолдана отырып, параболалық типтегі теңдеулер үшін әр түрлі шекаралық есептердің  классикалық шешімдерінің бар  болуы дәлелденді.

     Коэффициенті үзілісті болған  жағдайда, бұл мәселелердің спектрлік теориясы толығымен құрылды.   Бұл жерде [6-16] еңбектерді атап өтуге болады.

     Берілген жұмыста жылуөткізгіштік коэффициенті бөлікті-тұрақты жылуөткізгіштік теңдеу үшін шеттік шарты Штурм типіндегі (бөлінген шекаралық шарттар)  бастапқы-шекаралық есепті, айнымалыларды ажырату әдісімен шешу негізделген және барлық мүмкін жағдайлар қарастырылған.

Әдебиеттер тізімі

Самарский А.А. Параболические уравнения с разрывными коэффициентами.//ДАН СССР, 1958, т.121, №2, с.225-228.

Ким Е.И., Баймуханов Б.Б. О распределении температуры в кусочно-однородной полубесконечной пластинке.// ДАН СССР,1961,т. 140, №2, с.333-336.

Камынин Л.И. О решении краевых задач для параболического уравнения с разрывными коэффициентами.// ДАН СССР, 1961, т.139, №5, с.1048-1051.

Кaмынин Л.И. O рeшeнии IV и V крaeвых зaдaч для oднoмeрнoгo пaрaбoличecкoгo урaвнeния втoрoгo пoрядкa в кривoлинeйнoй oблacти // Журн.вычиcл.мaтeмaтики и мaт.физики.-1969.-Т.9.-№3.-с.558-572.

Камынин Л.И. О методе потенциалов для параболического уравнения с разрывными коэффициентами.//ДАН СССР, 1962, т.145,№6, с.1213-1216.

Кесельман Г.М. О безусловной сходимости разложений по собственным функциям

некоторых дифференциальных операторов.//Известия вузов. Математика – 1964.

– №2. – с. 82-93.

Михайлов В.П. О базисах Рисса в // Доклады АН СССР – 1962. – Т. 144,

№5. – с. 981-984.

Данфорд Н., Шварц Дж.Т. Линейные операторы. часть III, Спектральные

операторы. – Нью Йорк. – 1974, 662 с.

Ионкин Н.И., Моисеев Е.И. О задаче для уравнения теплопроводности с

двуточечными краевыми условиями. //Дифференциальные уравнения, 1979. –

Т.15.-№7. с. 1284–1295.

Ионкин Н.И. Решение одной задачи теории теплопроводности с неклассическим

краевым условием.// Дифференциальные уравнения, 1977.-Т.13.-№2. С. 294-304.

Ионкин Н.И., Морозова В.А. Двумерное уравнение теплопроводности с

нелокальными краевыми условиями. //Дифференциальные уравнения, 2000. –

Т.36.-№7. с. 884–888.

Оразов И., Садыбеков М.А. Об одном классе задач определения температуры и

плотности источников тепла по начальной и конечной температурам.// Сибирский

математический журнал. – 2012. – Т. 53, №1. – с. 180-186.

Оразов И., Садыбеков М.А. Об одной нелокальной задаче определения

температуры и плотности источников тепла. // Известия вузов. Математика. – 2012.

– №2. – с. 70–75.

Sadybekov M.A. Initial-Boundary Value Problem for a Heat Equation with not Strongly

Regular Boundary Conditions // Functional Analysis in Interdisciplinary Applications. –

Springer Proceedings in Mathematics & Statistics. – 2017. – Vol. 216. – P. 330–348.

Orazov I., Sadybekov M.A. On an inverse problem of mathematical modeling of the

extraction process of polydisperse porous materials. – AIP Conference Proceedings. –

– Vol. 1676, 020005. – 4 pp.

Orazov I., Sadybekov M.A. One-dimensional Diffusion Problem with not Strengthened

Regular Boundary Conditions // AIP Conference Proceedings. – 2015. – Vol. 1690,

– 6pp.

Жүктеулер

Жарияланды

2022-03-28