MULTI-DIFFERENT BENEFIT FUNCTION AND ERROW-PRATT DIMENSION

149 75

Authors

  • L.S. SPANKULOVA
  • R.K. KERIMBAYEV

Abstract

In this article, the study of utility functions in the economic study of human behavior is explored using geometric methods. The utility function is an analogue of the mathematical expectation in mathematical statistics, and finding its explicit form is a difficult problem. Based on the Arrow-Pratt coefficient, we determine some of the geometric properties of the utility function. Economic processes cannot be described by a single utility function. The authors present various utility functions in the form of a mathematical model according to economic conditions such as industrial development.

References

Aumann R.J. The St. Petersburg Paradox: A Discussion of Some Recent Comments // Journal of Economic Theory. 1977. Vol. 14 (2). P. 443—445.

Bernoulli D. Specimen Theoriae Novae de Mensura Sortis // Commentarii Academiae Scientiarum Imperialis Petropolitanea. 1738. Vol. V. P. 175—192. (Translated and republished as: Bernoulli D. Exposition of a New Theory on the Measurement of Risk // Econometrica. 1954. Vol. 22. P. 23—36.)

Seidl C. The St. Petersburg Paradox at 300 // Journal of Risk and Uncertainty. 2013. Vol. 46. P. 247—264.

Schoemaker, P.J.H. The Expected Utility Model: Its Variants, Purposes, Evidence and Limitations // Journal of Economic Literature, 1982. 20(2), 529-563.

Коровин Д.И. О нахождении функции полезности в теории Неймана-Моргенштерна // Вестник ИГЭУ, 2005. № 4, С. 83-88.

Kerimbayev, R.K. (2018). A Geometric Solution to the Jacobian Problem // Journal of New Theory, 24, P. 44-49.

Published

2022-03-28