Discrete inverse problem for a hyperbolic equation, properties of the solution to a discrete direct and auxiliary discrete problems
31 41
Keywords:
hyperbolic equation, discrete direct and inverse problem, Cauchy problem.Abstract
This paper considers the formulation of a discrete inverse problem for a
hyperbolic equation. First, the continuous inverse problem is reduced to a convenient form for
research. In the inverse problem, the required function is considered even. Since the Dirac delta
function is present in the problem data, the structure of a generalized solution to the Cauchy
problem for a hyperbolic equation is determined. The solution to the Cauchy problem for a
hyperbolic equation is determined only for positive values in time, therefore the solution to the
Cauchy problem for negative values in time is determined using odd continuation. After some
transformations, the formulation of the continuous inverse problem is reduced to a form convenient
for research. A grid domain is introduced, and for all functions in the problem statement the
corresponding grid functions and a discrete analogue of the Dirac delta function are determined.
Differential operators, initial conditions and additional data of the inverse problem are
approximated by finite differences. Assuming that a solution to the discrete inverse problem exists,
we prove the data lemma of the discrete inverse problem. In order to study the discrete inverse
problem for a hyperbolic equation, a theorem on the existence and uniqueness of the discrete direct
problem is proved, as well as on the properties of the solution to this discrete problem. In the course
of proving the theorem, a discrete analogue of d'Alembert's formula for solving the Cauchy problem
for a hyperbolic equation was obtained. The theorem on the existence of a unique solution to the
auxiliary discrete problem and its properties is proved.
References
ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР
Romanov V. G. On justification of the Gelfand–Levitan–Krein method for a two-dimensional
inverse problem //Siberian Mathematical Journal. – 2021. – Т. 62. – №. 5. – p. 908-924.
Kabanikhin S. I., Novikov N. S., Shishlenin M. A. Gelfand-Levitan-Krein method in onedimensional elasticity inverse problem //Journal of Physics: Conference Series. – IOP Publishing,
– Т. 2092. – №. 1. – p. 012022.
Kabanikhin S., Shishlenin M., Novikov N. and Prokhoshin N. Spectral, Scattering and Dynamics:
Gelfand–Levitan–Marchenko–Krein Equations //Mathematics. – 2023. – Т. 11. – №. 21. – p. 4458.
S.Kabanikhin, M.Shishlenin, G.Bakanov. Multidimensional analogue of Krein equation for the
inverse acoustic problem // Abstracts of the VII World Congress of Turkic World Mathematicians
(TWMS Congress-2023) – р.312.
Bektemessov M., Temirbekova L. Discretization of equations Gelfand-Levitan-Krein and
regularization algorithms //Journal of Physics: Conference Series. – IOP Publishing, 2021. – Т. 2092.
– №. 1. – p. 012015.
Temirbekov N.M., Kabanikhin S.I., Temirbekova L.N., Demeubayeva Zh.E. “Gelfand-Levitan
integral equation for solving coefficient inverse problem”. International scientifically-technical
journal herald to National Engineering Academy of the Republic of Kazakhstan, No. 3(85), (2022):
p.158-167. https:/doi.org/10.47533/2020.1606-146X.184
Каримов Ш. Т., Мамадалиева Ш. Г. Решение коэффициентной обратной задачи для
гиперболического уравнение сведением её у уравнению Гелфанда-Левитана первого
рода//Finland International Scientific Journal of Education, Social Science & Humanities. – 2022. –
Т. 10. – №. 12. – С. 142-151 8. Исламов Э. Р., Мамадалиева Ш. Г. Решение коэффициентной обратной задачи для
гиперболического уравнение сведением её у уравнению Гелфанда-Левитана второго рода
//Finland International Scientific Journal of Education, Social Science & Humanities. – 2022. – Т.
– №. 12. – С. 399-404.
Алыбаев А. М. Регуляризация обратной задачи с оператором гиперболического типа, где
вырождается некорректное уравнение Вольтерра первого рода // Международный журнал
прикладных и фундаментальных исследований. – 2022. – № 7 – С. 57-71.
Кабанихин С. И., Криворотько О. И. Оптимизационные методы решения обратных задач
иммунологии и эпидемиологии //Журнал вычислительной математики и математической
физики. – 2020. – Т. 60. – №. 4. – С. 590-600.
Пененко А. В. Метод Ньютона–Канторовича для решения обратных задач идентификации
источников в моделях продукции–деструкции с данными типа временных рядов //Сибирский
журнал вычислительной математики. – 2019. – Т. 22. – №. 1. – С. 57-79.
Ватульян А. О., Нестеров С. А. Решение обратной задачи об идентификации двух
термомеханических характеристик функционально-градиентного стержня //Известия
Саратовского университета. Новая серия. Серия Математика. Механика. Информатика. –
– Т. 22. – №. 2. – С. 180-195.
Konuk T., Shragge J. Modeling full-wavefield time-varying sea-surface effects on seismic data: A
mimetic finite-difference approach //Geophysics. – 2020. – Т. 85. – №. 2. – p. T45-T55.
https://doi.org/10.1190/geo2019-0181.1
Романов В.Г.Обратные задачи математической физики.-М.:Наука, 1984. 264 с.
REFERENCES
Romanov V. G. On justification of the Gelfand–Levitan–Krein method for a two-dimensional
inverse problem // Siberian Mathematical Journal. – 2021. – Т. 62. – №. 5. – p. 908-924.
Kabanikhin S. I., Novikov N. S., Shishlenin M. A. Gelfand-Levitan-Krein method in onedimensional elasticity inverse problem //Journal of Physics: Conference Series. – IOP Publishing,
– Т. 2092. – №. 1. – p. 012022.
Kabanikhin S., Shishlenin M., Novikov N. and Prokhoshin N. Spectral, Scattering and Dynamics:
Gelfand–Levitan–Marchenko–Krein Equations //Mathematics. – 2023. – Т. 11. – №. 21. – p. 4458.
S.Kabanikhin, M.Shishlenin, G.Bakanov. Multidimensional analogue of Krein equation for the
inverse acoustic problem // Abstracts of the VII World Congress of Turkic World Mathematicians
(TWMS Congress-2023) – р.312.
Bektemessov M., Temirbekova L. Discretization of equations Gelfand-Levitan-Krein and
regularization algorithms // Journal of Physics: Conference Series. – IOP Publishing, 2021. – Т.
– №. 1. – p. 012015.
Temirbekov N.M., Kabanikhin S.I., Temirbekova L.N., Demeubayeva Zh.E. Gelfand-Levitan
integral equation for solving coefficient inverse problem // International scientifically-technical
journal herald to National Engineering Academy of the Republic of Kazakhstan, No. 3(85), (2022):
p.158-167. https:/doi.org/10.47533/2020.1606-146X.184
Karimov Sh. T., Mamadalieva Sh. G. Reshenie koeffitsientnoy obratnoy zadachi dlya
giperbolicheskogo uravnenie svedeniem eYo u uravneniyu Gelfanda-Levitana pervogo roda
//Finland International Scientific Journal of Education, Social Science & Humanities. – 2022. – Т.
– №. 12. – p. 142-151. (in Russian)
Islamov E. R., Mamadalieva Sh. G. Reshenie koeffitsientnoy obratnoy zadachi dlya
giperbolicheskogo uravnenie svedeniem eYo u uravneniyu Gelfanda-Levitana vtorogo roda //Finland
International Scientific Journal of Education, Social Science & Humanities. – 2022. – Т. 10. – №.
– p. 399-404. (in Russian)
Alyibaev A. M. Regulyarizatsiya obratnoy zadachi s operatorom giperbolicheskogo tipa, gde
vyirozhdaetsya nekorrektnoe uravnenie Volterra pervogo roda // Mezhdunarodnyiy zhurnal
prikladnyih i fundamentalnyih issledovaniy. – 2022. – № 7 – p. 57-71. (in Russian) 10. Kabanihin S. I., Krivorot’ko O. I. Optimizatsionnyie metodyi resheniya obratnyih zadach
immunologii i epidemiologii //Zhurnal vyichislitelnoy matematiki i matematicheskoy fiziki.– 2020. –
Т. 60. – №. 4. – p. 590-600. (in Russian)
Penenko A. V. Metod Nyutona–Kantorovicha dlya resheniya obratnyih zadach identifikatsii
istochnikov v modelyah produktsii–destruktsii s dannyimi tipa vremennyih ryadov //Sibirskiy
zhurnal vyichislitelnoy matematiki. – 2019. – Т. 22. – №. 1. –p. 57-79. (in Russian)
Vatulyan A. O., Nesterov S. A. Reshenie obratnoy zadachi ob identifikatsii dvuh
termomehanicheskih harakteristik funktsionalno-gradientnogo sterzhnya //Izvestiya Saratovskogo
universiteta. Novaya seriya. Seriya Matematika. Mehanika. Informatika.– 2022. – Т. 22. – №. 2. – p.
-195. (in Russian)
Konuk T., Shragge J. Modeling full-wavefield time-varying sea-surface effects on seismic data: A
mimetic finite-difference approach //Geophysics. – 2020. – Т. 85. – №. 2. – p. T45-T55.
https://doi.org/10.1190/geo2019-0181.1
Romanov V.G. Obratnye zadachi matematicheskoj fiziki.- M.:Nauka, 1984. 264р. (in Russian)