Investigation of the solvability of boundary value problems for the nonlocal Poisson equation with periodic conditions in circular domains

31 73

Authors

  • Zh.B. Dzhanzakova Khoja Akhmet Yassawi Kazakh-Turkish International University
  • B.Kh. Turmetov Khoja Akhmet Yassawi Kazakh-Turkish International University

Keywords:

involution, nonlocal operator, Poisson equation, Laplace operator, periodic problem, Dirichlet problem, Neumann problem, eigenfunctions, eigenvalues.

Abstract

. In this paper, boundary value problems with transformed arguments are studied in the unit ball. The transformation of the arguments is specified using the involution type mapping. These mappings participate both in the equation and in the boundary conditions. The equation under consideration is a nonlocal analog of the Poisson equation. Boundary conditions are specified as a relationship between the value of the desired function in the upper hemisphere and the value of the lower hemisphere. These conditions generalize the known periodic conditions for spherical regions. When studying boundary value problems, the properties of involutive mappings are used. The problems under consideration are solved by reducing them to analogues of boundary value problems with periodic conditions for the classical Poisson equation. Using well-known statements for periodic problems for the problems under consideration, theorems on the existence and uniqueness of solutions are proved. Exact conditions for the solvability of the problems under study are found. Spectral questions related to periodic problems are also studied. Eigenfunctions and eigenvalues of these problems are found.

References

Przeworska-Rolewicz D. Some boundary value problems with transformed argument//Commentarii Mathematici Helvetici/ – 1974. – V.17. – P. 451– 457.

Sadybekov M.A., Turmetov B.Kh. On analogues of periodic boundary value problems for the Laplace operator in a ball// Eurasian Mathematical Journal. – 2012. – Vol.3, No.1. – P.143 – 146.

Sadybekov M.A., Turmetov B.Kh. On an analog of periodic boundary value problems for the Poisson equation in the disk // Differential Equations. – 2014. – Vol. 50, No. 2. – P. 268 – 273. https://doi.org/10.1134/S0012266114020153.

Karachik V.V., Turmetov B.Kh. Solvability of one nonlocal Dirichlet problem for the Poisson equation// Novi sad journal of mathematics.– 2020.– Vol. 50, No. 1. – P.67 - 88. http://doi.org/10.30755/NSJOM.08942.

Sadybekov M.A., Dukenbayeva A.A. On a nonlocal boundary value problem for the Laplace operator, which is a multidimensional generalisation of the Samarskii-Ionkin problem // News of the Khoja Akhmet Yassawi KazakhTurkish international university. Mathematics, physics, computer science. – 2018. – Vol. 1, №1(4). – P. 81–83.

Sadybekov M.A., Dukenbayeva A.A. Direct and inverse problems for the Poisson equation with equality of flows on a part of the boundary // Complex Variables and Elliptic Equations. – 2019. – Vol. 64, №5. – P. 777-791. https://doi.org/10.1080/17476933.2018.1517340

Sadybekov M.A., Dukenbayeva A.A. On boundary value problem of the Samarskii-Ionkin type for the Laplace operator in a ball // Kazakh Mathematical Journal. – 2020. – Vol. 20, №1. – P. 84–94.

Sadybekov M.A., Dukenbayeva A.A. On boundary value problem of the Samarskii-Ionkin type for the Laplace operator in a ball // Complex Variables and Elliptic Equations. – 2022.– Vol. 67, № 2 – P. 369–383. https://doi.org/10.1080/17476933.2020.1828377

Sadybekov M.A., Turmetov B.Kh., Torebek B.T. Solvability of nonlocal boundary-value problems for the Laplace equation in the ball // Electronic Journal of Differential Equations. – 2014. – Vol. 2014, No. 157. – P. 1–14.

Sadybekov M.A., Yessirkegenov N.A. On a generalised SamarskiiIonkin type problem for the Poisson equation // Kazakh Mathematical Journal. – 2017. – Vol. 17, No. 1. – P. 115–116.

Turmetov B.Kh., Koshanova M., Usmanov K. About solvability of some boundary value problems for Poisson equation in the ball conditions // Filomat. – 2018. – Vol. 32, No. 3. – P. 939-946.https://doi:10.2298/FIL1803939K

Turmetov B.Kh. Generalization of the Robin Problem for the Laplace Equation // Differential Equations.– 2019. – Vol. 55, No. 9. – P. 1134–1142. https://doi.org/10.1134/S0012266119090027

Yessirkegenov N. Spectral properties of the generalized Samarskii Ionkin type problems // Filomat. – 2018. – Vol. 32, No. 3. – P. 1019–1024. https://doi:10.2298/FIL1803019Y

Kal’menov T.S., Iskakova U.A. A criterion for the strong solvability of the mixed Cauchy problem for the Laplace equation // Dokl Math. – 2007. – Vol. 75, No. 3. – P. 370-373. https://doi.org/10.1134/S1064562407030118

Kal’menov T.S., Iskakova U.A. A method for solving the Cauchy problem for the Laplace equation // Dokl Math. – 2008. – Vol. 78, No. 3. – P. 874-876. https:// doi: 10.1134/S1064562408060185

Yarka U., Fedushko S., Vesely P. The Dirichlet Problem for the Perturbed Elliptic Equation//Mathematics. – 2020. – Vol.8, No.2108. – P.1–13. https://doi.org/10.3390/math8122108

Karachik V., Sarsenbi A., Turmetov B. On the solvability of the main boundary value problems for a nonlocal Poisson equation// Turkish Journal of Mathematics. – 2019. – Vol. 43, No. 3. – P. 1604 – 1625. https:// doi: 10.3906/mat-1901-71

Turmetov B., Karachik V. On Eigenfunctions and Eigenvalues of a Nonlocal Laplace Operator with Multiple Involution//Symmetry. – 2021. – Vol.13, No.1781.– P. 1 – 20. https:// doi.org/10.3390/sym13101781

Турметов Б. Х., Карачик В. В. О разрешимости краевых задач Дирихле и Неймана для уравнения Пуассона с множественной инволюцией// Вестн. Удмуртск.ун-та. Матем. Мех. Компьют. науки. – 2021. – Т. 31, No. 4. – C. 651 – 667. https://doi.org/10.35634/vm210409

Бицадзе А.В. Уравнения математической физики. Учебник. – 2-е изд., перераб. и дополненное. — М.: Наука, 1976, – 296 с.

Sadybekov M.A., Torebek B.T., Turmetov B.Kh.. Representation of Green’s function of the Neumann problem for a multi-dimensional ball // Complex Variables and Elliptic Equations. – 2016. – Vol. 61, № 1. – P.104–123. https://doi.org/10.1080/17476933.2015.1064402

Przeworska-Rolewicz D. Some boundary value problems with transformed argument//Commentarii Mathematici Helvetici/ – 1974. – V.17. – P. 451– 457.

Sadybekov M.A., Turmetov B.Kh. On analogues of periodic boundary value problems for the Laplace operator in a ball// Eurasian Mathematical Journal. – 2012. – Vol.3, No.1. – P.143 – 146.

Sadybekov M.A., Turmetov B.Kh. On an analog of periodic boundary value problems for the Poisson equation in the disk // Differential Equations. – 2014. – Vol. 50, No. 2. – P. 268 – 273. https://doi.org/10.1134/S0012266114020153.

Karachik V.V., Turmetov B.Kh. Solvability of one nonlocal Dirichlet problem for the Poisson equation// Novi sad journal of mathematics.– 2020.– Vol. 50, No. 1. – P.67 - 88. http://doi.org/10.30755/NSJOM.08942.

Sadybekov M.A., Dukenbayeva A.A. On a nonlocal boundary value problem for the Laplace operator, which is a multidimensional generalisation of the Samarskii-Ionkin problem // News of the Khoja Akhmet Yassawi KazakhTurkish international university. Mathematics, physics, computer science. – 2018. – Vol. 1, №1(4). – P. 81–83.

Sadybekov M.A., Dukenbayeva A.A. Direct and inverse problems for the Poisson equation with equality of flows on a part of the boundary // Complex Variables and Elliptic Equations. – 2019. – Vol. 64, №5. – P. 777-791. https://doi.org/10.1080/17476933.2018.1517340

Sadybekov M.A., Dukenbayeva A.A. On boundary value problem of the Samarskii-Ionkin type for the Laplace operator in a ball // Kazakh Mathematical Journal. – 2020. – Vol. 20, №1. – P. 84–94.

Sadybekov M.A., Dukenbayeva A.A. On boundary value problem of the Samarskii-Ionkin type for the Laplace operator in a ball // Complex Variables and Elliptic Equations. – 2022.– Vol. 67, № 2 – P. 369–383. https://doi.org/10.1080/17476933.2020.1828377

Sadybekov M.A., Turmetov B.Kh., Torebek B.T. Solvability of nonlocal boundary-value problems for the Laplace equation in the ball // Electronic Journal of Differential Equations. – 2014. – Vol. 2014, No. 157. – P. 1–14.

Sadybekov M.A., Yessirkegenov N.A. On a generalised SamarskiiIonkin type problem for the Poisson equation // Kazakh Mathematical Journal. – 2017. – Vol. 17, No. 1. – P. 115–116.

Turmetov B.Kh., Koshanova M., Usmanov K. About solvability of some boundary value problems for Poisson equation in the ball conditions // Filomat. – 2018. – Vol. 32, No. 3. – P. 939-946.https://doi:10.2298/FIL1803939K

Turmetov B.Kh. Generalization of the Robin Problem for the Laplace Equation // Differential Equations.– 2019. – Vol. 55, No. 9. – P. 1134–1142. https://doi.org/10.1134/S0012266119090027

Yessirkegenov N. Spectral properties of the generalized Samarskii Ionkin type problems // Filomat. – 2018. – Vol. 32, No. 3. – P. 1019–1024. https://doi:10.2298/FIL1803019Y

Kal’menov T.S., Iskakova U.A. A criterion for the strong solvability of the mixed Cauchy problem for the Laplace equation // Dokl Math. – 2007. – Vol. 75, No. 3. – P. 370-373. https://doi.org/10.1134/S1064562407030118

Kal’menov T.S., Iskakova U.A. A method for solving the Cauchy problem for the Laplace equation // Dokl Math. – 2008. – Vol. 78, No. 3. – P. 874-876. https:// doi: 10.1134/S1064562408060185

Yarka U., Fedushko S., Vesely P. The Dirichlet Problem for the Perturbed Elliptic Equation//Mathematics. – 2020. – Vol.8, No.2108. – P.1–13. https://doi.org/10.3390/math8122108

Karachik V., Sarsenbi A., Turmetov B. On the solvability of the main boundary value problems for a nonlocal Poisson equation// Turkish Journal of Mathematics. – 2019. – Vol. 43, No. 3. – P. 1604 – 1625. https:// doi: 10.3906/mat-1901-71

Turmetov B., Karachik V. On Eigenfunctions and Eigenvalues of a Nonlocal Laplace Operator with Multiple Involution//Symmetry. – 2021. – Vol.13, No.1781.– P. 1 – 20. https:// doi.org/10.3390/sym13101781

Turmetov B. Kh., Karachik V. V. On the solvability of Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution// Vestn. Udmurt University. Mat. Fur. Computer. Sciences. – 2021. – Т. 31, No. 4. – C. 651 – 667.https://doi.org/10.35634/vm210409

Bitsadze A.V. Equations of mathematical physics. Textbook. - 2nd ed., revised. and supplemented. – М.: Наука, 1976, – 296 с.

Sadybekov M.A., Torebek B.T., Turmetov B.Kh.. Representation of Green’s function of the Neumann problem for a multi-dimensional ball // Complex Variables and Elliptic Equations. – 2016. – Vol. 61, № 1. – P.104–123. https://doi.org/10.1080/17476933.2015.1064402

Published

2024-03-27

Most read articles by the same author(s)