Influence of electrolytic plasma treatment on the physical and mechanical properties of steels
163 0 149
Keywords:
Electrolyte-plasma treatment, cementation, nitriding, boration, wear resistance, microhardness.Abstract
This article presents an overview of research data on new electrochemical processing processes, classified under the general name of the process of electrolytic-plasma surface heat treatment from various research papers. The review is made to expand the research work on this new process of industrial vision and coverage. Particular attention is paid to the prospects of its use for modifying and coating surfaces. Various types of electrolytic plasma treatment have been discussed to illustrate the possibilities of the process for improving the surface properties of various metals. Compared to existing heat treatment processes, the treatment takes less time, is economical, environmentally friendly and dynamic. Its dynamic capabilities include carburizing, nitriding, plating, cleaning, polishing, etc. to harden in one pilot plant by making small changes to enable operations. The processing modes and composition of electrolytes, structural features of the processed layers, their microhardness and surface roughness, tribological and anticorrosion, i.e. physical and mechanical properties in various environments. In general, processing modes have been determined that allow a significant increase in the antiwear and corrosion resistance of steels. A conclusion is made about the prospects of electrolytic-plasma treatment, the advantages and limitations of this method are noted, including the proposed directions for further research.
References
ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР ТІЗІМІ
Фетисов Г.П., Гарифуллин Ф.А. Материаловедение и технология металлов: учебник. – Москва: Изд-во Оникс, 2007. – 161 c.
Уильям Д., Дэвид Дж. Материаловедение: от технологии к применению (металлы, керамика, полимеры). – Санкт-Петербург: Изд-во Научные основы и технологии, 2011. – 894 с. ISBN 978–5–91703–022–7 ISBN 978–0–471–71046–2 (англ.)
Smirnov A.A., Kusmanov S.A., Kusmanova, I.A., Belkin P.N. Effect of electrolyte depletion on the characteristics of the anodic plasma electrolytic nitriding of a VT22 titanium alloy // Surface Engineering and Applied Electrochemistry. – 2017. – 53. – 413–418. https://doi.org/10.3103/S106837551705012X
Luk S.F., Leung, T.P., Miu W.S., Pashby I. Heating performance of electrolytic heat-treatment in aqueous solution by pulse current. Journal of Materials Processing Technology 1997. – 63. – 833–838. https://doi.org/10.1016/S0924-0136(96)02734–3
Belkin P.N., Yerokhin A., Kusmanov S.A. Plasma-Electrolytic nitriding of 0.3Cr–1Mn–1Sl–Fe construction steel // Metal. – 2019. – № 989. – P. 1174–1180.
Vitthal R., Jumbad Arvind Chel, Updesh Verma, Geetanjali Kaushik Application of Electrolytic Plasma Process in Surface Improvement of Metals: A Review // 2020. – № 9. – P. 1249 – 1262. https://doi.org/10.33263/LIANBS93.12491262
Rakhadilov B., Satbayeva Z., Ramankulov S., Shektibayev N., Zhurerova L., Popova N., Uazyrkhanov G., Sagdoldina Zh. Change of 0.34Cr–1Ni–Mo–Fe Steel Dislocation Structure in Plasma Electrolyte Hardening // J. of Materials. – 2020. – №14(8). – P. 1928. [https://doi.org/10.3390/ma14081928]
Погребняк А.Д., Тюрин Ю.Н., Бойко А.Г., Жадкевич М.Л., Калышканов М.К., Рузимов Ш.М. Электролитно-плазменная обработка и нанесение покрытий на металлы и сплавы // Успехи физики металлов. – 2005. – Т. 6. – №4. – С. 273–344.
Dayanç A., Karaca B., Kumruoğlu L. The Cathodic Electrolytic Plasma Hardening of Steel and Cast Iron Based Automotive Camshafts. // Acta Physica Polonica. – 2017. – №131. – 374– 379.
Kusmanov S., Zhirov A., Kusmanova I., Belkin, P. Aspects of anodic plasma electrolytic polishing of nitrided steel. Surface Engineering // 2019. – №35. – P. 507–511. https://doi.org/10.1080/02670844.2017.1406574
Rakhadilov B.K., Vladimir V.B., Satbayeva Z.A., Sagdoldina Zh.B., Pogrebnjak A.D. The cathodic electrolytic plasma hardening of the 20Cr2Ni4A chromium-nickel steel // J. of Materials Research and Technology. – 2020. – №9(4). – P. 6969–6976. https://doi.org/10.1016/j.jmrt.2020.05.020
Rita C.C., Nilson C.C., Elidiane C.R. Role of the Plasma Activation Degree on Densification of Organosilicon Films // Materials. – 2020. ¬– № 13(1). – P. 25. https://doi.org/10.3390/ma13010025
Yongfu Zhang, Aiming Bu, Yan Xiang, Yunjie Yang, Weiwei Chen, Huanwu Cheng, Lu Wang. Improving corrosion resistance of carbonyl iron powders by plasma electrolytic deposition, Materials & Design. – 2020. – Vol 188. – 108480, ISSN 0264-1275.
Klapkiv M.D., Chuchmarev O.S., Sydor P.Y., Posuvailo V.M. Thermodynamics of the interaction of aluminum, magnesium, and zirconium with components of an electrolytic plasma. Materials Science. – 2000. – №36. – 66–79. https://doi.org/10.1007/BF02805119
Luk S.F., Leung T.P., Miu W.S., Pashby I. Development of electrolytic heat–treatment in aqueous solution. Journal of Materials Processing Technology. – 1998. – № 84. – P. 189–192.
Ayday A., Durman M. Wear performance of ductile iron after electrolytic plasma hardening. Metallic Materials. – 2019. – №57. – 19–26. https://doi.org/10.4149/km_2019_1_19
Apelfeld A., Borisov A., Dyakov I., Suminov I., Tambovskiy I. Enhancement of medium–carbon steel corrosion and wear resistance by plasma electrolytic nitriding and polishing // J. of metals. – 2021. – №11. – P. 1599.
Yeo S., Min Lee C., Soo Yoon H., Hwan Kim J. Synthesis of plasma–nitrided Cr coatings on HT9 steel for advanced chemical barrier property in a nuclear cladding application // J. of Applied Surface Science. – 2022. – №579.
Гаврилов Н.В., Мамаев А.С., Чукин А.В. Азотирование нержавеющей стали в плазме импульсного электронного пучка // Письма в журнал технической физики. – 2016. – №9. – P. 416–422.
Яцюк И.В., Добрынин Д.А., Доронин О.Н., Павлова Т.В. Методы удаления жаростойких покрытий (обзор) // Труды Виам. – 2020. – №10.– C. 92.
Çelikkan H., Öztürk M.K., Aydin H., Aksu M.L. Boriding titanium alloys at lower temperatures using electrochemical methods. // Thin Solid Films. – 2007. – № 515. – P. 5348–5352.
Под ред. Ю.М. Лахтина, А.Г. Рахштадта. Термическая обработка в машиностроении. Справочник. – М.: Машиностроение. – 1980. – P. 783.
Лахтин Ю.М., Арзамасов Б.Н. Химико-термическая обработка металлов. – М.: Металлургия. – 1985. – 424. – С. 2.
Kunst H., Haase B., Malloy J.C., Wittel K. et al. Metals, Surface Treatment. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012, p. 782–783.
Taheri P., Dehghanian Ch., Aliofkhazraei M., Rouhaghdam A.S. Plasma Process. – Polym. // 2007. – С. 711–716.
Kilic A., Kartal G., Urgen M., Timur S. Surf Eng Appl Electrochem. 2013, 49 (2), 80–86.
Суминов И.В., Белкин П.Н., Эпельфельд А.В., Людин В.Б. и др. Плазменно–электролитическое модифицирование поверхности металлов и сплавов. – М.: Техносфера. – 2011. – №2. – C. 512.
Wang B., Xue W.B., Wu J., Jin X.Y. // J. Alloy Compd. – 2013.– №578. – C.162–169.
Taheri P., Dehghanian Ch., Aliofkhazraei M., Rouhaghdam A.S. Plasma Process. – Polym. // 2007. – №4. – C.721–727.
Гуляев А.П. Mеталлургия. – Москва: Металл, 1977. – 6 том.
Погребняк А.Д., Тюрин Ю.Н., Ивченко А.П., Понарядов В.В., Рузимов Ш.М. Металлофиз. новейшие технол. – 2003. – №25. – C. 1329.
Никитин В.Н., Еретнов К.И., Артемьев А.В. Электронная обработка материалов. М., Металлургия – 1983. – №2. – 35.
Weijian Chen, Pengfei Gao, Wang Shuai, Xiaolong Zhao, Zhengzhi Zhao. Strengthening mechanisms of Nb and V microalloying high strength hot-stamped steel // Materials Science and Engineering. – 2020. – №797. https: // doi.org/10.1016/j.msea.2020.140115
Ivanov S.V., Salmanov N.S., Salmanov M.N. Met Sci Heat Treat. – 2002. – №44. – 405–406.
Tavakoli H., Khoie S.M., Rasooli F., Marashi S.P.H. et al. Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing, // Surf Coat Technol. – 2015. – №276. – 529–533.
Kusmanov S.A., Tambovskiy I.V., Sevostyanova V.S., Savushkina S.V. et al. Anode plasma electrolytic boriding of medium carbon steel // Surf Coat Technol. – 2016. – №291. – 334–341.
Терентьев С.Д. ЭОМ. – 1982. – №2. – 83–84.
Wei X., Chen Z.G., Zhong J., Wang L. et al. J Alloy Compd. – 2017. – №717. – 31–40.
Савицкий Е.М., Поварова К.Б., Макаров П.В. Металловедение вольфрама. – М.: Металлургия, 1978. – 224 с.
Lou B.S., Lee J.W., Tseng C.M., Lin Y.Y., Yen C.A. Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: Effect of MoS2 particle addition. // Surface and Coatings Technology. – 2018. – №350. – 813–822. https://doi.org/10.1016/j.surfcoat.2018.04.044
Luk S.F., Leung T.P. Miu W.S., Pashby I. A study of the effect of average preset voltage on hardness during electrolytic surface–hardening in aqueous solution. // Journal of Materials Processing Technology. – 1999. – №91. – P. 245–249. https://doi.org/10.1016/S0924–0136(98)00441–5
Shen D.J., Wang Y.L., Nash P., Xing G.Z. A novel method of surface modification for steel by plasma electrolysis carbonitriding. // Materials Science and Engineering. – 2007. – №458. – P. 240–243. https://doi.org/10.1016/j.msea.2006.12.067
Bartsch K., Leonhardt A. Surf Coat Technol. – 1999. – №116–119. – 386–390.
Чечулин Б.Б., Ушков С.С., Разуваева И.Н., Гольдфрайн В.Н. Титановые сплавы в машиностроении. – Л.: Машиностроение, 1977. – 248 с.
Кусманов С.А., Тамбовский И.В., Наумов А.Р., Дьяков И.Г. и др. Анодная электролитно-плазменная бороцементация малоуглеродистой стали // Физикохимия поверхности и защита металлов. – 2017. – №53 (3). С. – 321–328.
Скаков М.К., Курбанбеков Ш.Р Повышение механических свойств и коррозионностойкости нержавеющей стали с помощью плазменной обработки // V конференция «Современные методы в теоретической и экспериментальной электрохимии». – Плес, Ивановская обл., Россия. – 2013 г.
Скаков М.К., Курбанбеков Ш.Р., Табиева Е.Е., Заманбекулы Е. Mодификация поверхностных слоев нержавеющих сталей азотированием и нитроцементацией. – Томск. – 2013. – 147.
Sherzod Kurbanbekov, Маzhyn Skakov, Michail Scheffler, Azret Naltaev. Changes of Mechanical Properties of Steel 12Cr18Ni10Тi After Electrolytic-Plasma Cementation. – 2013. – №601. – P. 59–63. https://doi:10.4028/www.scientific.net/AMR.601.59
Béjar M.A., Henríquez R. Surface hardening of steel by plasma–electrolysis boronizing. // Materials & Design. – 2009. – №30. – 1726–1728. https://doi.org/10.1016/j.matdes.2008.07.006
Dyakov I.G., Burov S.V., Belkin P.N., Rozanov E.V., Zhukov S.A. Increasing wear and corrosion resistance of tool steel by anodic plasma electrolytic nitriding. // Surface and Coatings Technology. – 2019. – №362. – 124–131. https://doi.org/10.1016/j.surfcoat.2019.01.107
REFERENCES
Fetisov G.P., Garifullin F.A. Materialovedeniye i tekhnologiya metallov: uchebnik [Materials Science and Technology of Metals: textbook]. – Moscow: Oniks, 2007. – 161 s. [in Russian]
William D., David J. Materialovedeniye: ot tekhnologii k primeneniyu (metally, keramika, polimery) [Materials science: from technology to application (metals, ceramics, polymers)]. – St. Petersburg: Izd-vo Scientific foundations and technologies, 2011. – 599 s. [in Russian]
Smirnov A.A., Kusmanov S.A., Kusmanova I.A., Belkin P.N. Effect of electrolyte depletion on the characteristics of the anodic plasma electrolytic nitriding of a VT22 titanium alloy. Surface Engineering and Applied Electrochemistry, 2017, 53, 413–418. https://doi.org/10.3103/S106837551705012X [in English]
Luk S.F., Leung T.P., Miu W.S., Pashby I. Heating performance of electrolytic heat-treatment in aqueous solution by pulse current. Journal of Materials Processing Technology, 1997, 63, 833–838. https://doi.org/10.1016/S0924-0136(96)02734–3 [in English]
Belkin P.N., Yerokhin A., Kusmanov S.A. Plasma Electrolytic nitriding of 0.3Cr–1Mn–1Sl–Fe construction steel: article. – Metal, 2019. – 989, 1174–1180. [in English]
Vitthal R., Jumbad Arvind Chel, Updesh Verma Geetanjali Kaushik Application of Electrolytic Plasma Process in Surface Improvement of Metals: A Review, 2020, 9, 1249 – 1262. https://doi.org/10.33263/LIANBS93.12491262 [in English]
Rakhadilov B., Satbayeva Z., Ramankulov S., Shektibayev N., Zhurerova L., Popova N., Uazyrkhanov G., Sagdoldina Zh. Change of 0.34Cr–1Ni–Mo–Fe Steel Dislocation Structure in Plasma Electrolyte Hardening. Materials, 2020. – 8, 1928. [in Russian]
Pogrebnyak A.D., Tyurin Yu.N., Boyko A.G., Zhadkevich M.L., Kalyshkanov M. K., Ruzimov Sh.M. Elektrolitno-plazmennaya obrabotka i nanesenie pokrytij na metally i splavy [Electrolytic plasma treatment and coating on metals and alloys]. Advances in metal physics, 2005, 6, 4, 273–344 s. [in Russian]
Dayana A., Karaka B., Kumruoglu L. The Cathodic Electrolytic Plasma Hardening of Steel Andean Caste Based Automotive Camshafts. // Acta Physica Polonica, 2017, 131, 374 – 379. [in English]
Kusmanov S., Zhirov A., Kusmanova I., Belkin P. Aspects of anodic plasma electrolytic polishing of nitrided steel. Surface Engineering, 2019, 35, 507–511. https://doi.org/10.1080/02670844.2017.1406574
Rakhadilov B.K., Vladimir V.B., Satbayeva Z.A., Sagdoldina Zh.B., Pogrebnjak A.D. The cathodic electrolytic plasma hardening of the 20Cr2Ni4A chromium–nickel steel. Materials Research and Technology, 2020, 9 (4), 6969–6976. https://doi.org/10.1016/j.jmrt.2020.05.020
Rita C.C., Nilson C.C., Elidiane C.R. Role of the Plasma Activation Degree on Densification of Organosilicon Films. Materials, 2020, 13 (1), 25. https://doi.org/10.3390/ma13010025
Yongfu Zhang, Aiming Bu, Yan Xiang, Yunjie Yang, Weiwei Chen, Huanwu Cheng, Lu Wang. Improving corrosion resistance of carbonyl iron powders by plasma electrolytic deposition. Materials & Design, 2020, 188, 108480, ISSN 0264–1275. [in English]
Klapkiv M.D., Chuchmarev O.S., Sydor P.Y., Posuvailo V.M. Thermodynamics of the interaction of aluminum, magnesium, and zirconium with components of an electrolytic plasma. Materials Science, 2000, 36, 66–79. https://doi.org/10.1007/BF02805119
Luk S.F., Leung T.P., Miu W.S., Pashby I. Development of electrolytic heat–treatment in aqueous solution. Journal of Materials Processing Technology, 1998, 84, 189–192.
Ayday A., Durman M. Wear performance of ductile iron after electrolytic plasma hardening. Metallic Materials 2019, 57, 19–26. https://doi.org/10.4149/km_2019_1_19
Apelfeld A., Borisov A., Dyakov I., Suminov I., Tambovskiy I. Enhancement of medium–carbon steel corrosion and wear resistance by plasma electrolytic nitriding and polishing. Metals, 2021, 11, 1599. [in English]
Yeo S., Min Lee C., Soo Yoon H., Hwan Kim J. Synthesis of plasma–nitrided Cr coatings on HT9 steel for advanced chemical barrier property in a nuclear cladding application. Applied Surface Science, 2022, 579.
Gavrilov N.V., Mamaev A.S., Chukin A.V. Azotirovaniye nerzhaveyushchey stali v plazme impul'snogo elektronnogo puchka [Nitriding of stainless steel in pulsed electron beam plasma]. Pis'ma v zhurnal tekhnicheskoy fiziki. Letters to the Journal of Technical Physics, 2016, 9, 416–422 s. [in Russian].
Yatsyuk I.V., Dobrynin D.A., Doronin O.N., Pavlova T.V. Methods of removing heat-resistant coverings (review). Proceedings of Viam, 2020, 10, 92.
Çelikkan H., Öztürk M.K., Aydin H., Aksu M.L. Boriding titanium alloys at lower temperatures using electrochemical methods. // Thin Solid Films. – 2007. – № 515. – P. 5348–5352.
Edited by Yu.M. Lakhtin, A.G. Rakhshtadt. Termicheskaya obrabotka v mashinostroenii [Heat treatment in mechanical engineering]. Guide. Moscow: Mashinostroenie, 1980, 783 s. [in Russian].
Lakhtin Yu.M., Arzamasov B.N. Himiko-termicheskaya obrabotka metallov [Chemical and thermal treatment of metals]. M.: Metallurgy, 1985, 424s. 2. [in Russian].
Kunst H., House B., Maloy J.C., Witte K. et al. Metals, Surface Treatment. Ullmann’s Encyclopedia of Industrial Chemistry. WileyVCH Verlag GmbH & Co. KGaA, Weinheim, 2012, 782–783.
Taheri P., Dehghanian Ch., Aliofkhazraei M., Rouhaghdam A.S. Plasma Process. – Polym. // 2007. – С. 711–716.
Kilic A., Kartal G., Urgen M., Timur S. Surf Eng Appl Electrochem. 2013, 49 (2), 80–86.
Suminov I.V., Belkin P.N., Epelfeld A.V., Lyudin V.B. et al. Plazmenno–elektroliticheskoe modificirovanie poverhnosti metallov i splavov [Plasma-electrolytic modeling of reliability of metals and alloys]. M.: Technosphere, 2011, 2, 512.
Wang B., Xue W.B., Wu J., Jin X.Y. J. Alloy Compd, 2013, 578, 162–169.
Taheri P., Dehghanian Ch., Aliofkhazraei M., Rouhaghdam A.S. Plasma Process Polym. 2007, 4, s. 721–727.
Gulyaev A.P. Metallurgiya / [Metallurgy]. – Moskva: Metall, 1977. – 6 tom. [in Russian]
Pogrebnyak A.D., Tyurin Yu.N., Ivchenko A.P., Ponaryadov V.V., Ruzimov Sh.M. Metallofiz. novejshie tehnologii [Metallophiz. new technologies]. 2003, 25, 1329. [in Russian].
Nikitin V.N., Yeretnov K.I., Artemyev A.V. Elektronnaya obrabotka materialov [Electronic processing of materials]. M., Metallurgiya – 1983, 2, 35. [in Russian].
Weijian Chen, Pengfei Gao, Wang Shuai, Xiaolong Zhao, Zhengzhi Zhao. Strengthening mechanisms of Nb and V microalloying high strength hot–stamped steel. Materials Science and Engineering, 2020. – 797. https://doi.org/10.1016/j.msea.2020.140115
Ivanov S.V., Salmanov N.S., Salmanov M.N. Met Sci Heat Treat 2002, 44, 405–406.
Tavakoli H., Khoie S.M., Rasooli F., Marashi S.P.H. et al. Electrochemical and physical characteristics of the steel treated by plasma-electrolysis boronizing, // Surf Coat Technol. – 2015. – №276. – 529–533.
Kusmanov S.A., Tambovskiy I.V., Sevostyanova V.S., Savushkina S.V. et al. Anode plasma electrolytic boriding of medium carbon steel // Surf Coat Technol. – 2016. – №291. – 334–341.
Terentyev S.D. EOM. 1982, 2, s. 83–84. [in Russian].
Wei X., Chen Z.G., Zhong J., Wang L. et al. J Alloy Compd, 2017, 717, 31–40.
Savitsky E.M., Povarova K.B., Makarov P.V. Metallovedenie volframa [Metallology of tungsten]. M.: Metallurgy, 1978 – 224 s. [in Russian]
Lou B.S., Lee J.W., Tseng C.M., Lin Y.Y., Yen C.A. Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: Effect of MoS2 particle addition. Surface and Coatings Technology, 2018, 350, 813–822. https://doi.org/10.1016/j.surfcoat.2018.04.044
Luk S.F., Leung T.P., Miu W.S., Pashby I. A study of the effect of average preset voltage on hardness during electrolytic surface–hardening in aqueous solution. Journal of Materials Processing Technology, 1999, 91, 245–249.https://doi.org/10.1016/S0924–0136(98)00441–5
Shen D.J., Wang Y.L., Nash P., Xing G.Z. A novel method of surface modification for steel by plasma electrolysis carbonitriding. Materials Science and Engineering, 2007, 458, 240–243. https://doi.org/10.1016/j.msea.2006.12.067
Bartsch K., Leonhardt A. Surf Coat Technol, 1999, 116–119, 386–390.
Chechulin B.B., Ushkov S.S., Razuvaeva I.N., Goldfine V.N. Titanovye splavy v mashinostroenii [Titanium alloys in mechanical engineering]. L.: Mechanical Engineering, –1977 – 248 s. [in Russian].
Kusmanov S.A., Tambovsky I.V., Naumov A.R., Dyakov I.G. Anodnaya elektrolitno-plazmennaya borocementaciya malouglerodistoj stali [Anodized electrolytic-plasma borocementation of maloglerodist Stali] // Fizikohimiya poverhnosti i zashita metallov. – 2017– 53 (3), 321–328 s. [in Russian].
Skakov M.K., Kurbanbekov Sh.R. Povyshenie mehanicheskih svojstv i korrozionnostojkosti nerzhaveyushej stali s pomoshyu plazmennoj obrabotki [Improving mechanical properties and corrosion resistance using plasma treatment]. // In the conference "Modern methods in theoretical and experimental electrochemistry" – Russia – 2013. [in Russian].
Skakov M.K., Kurbanbekov Sh., Tebieva E.E., Zamanbekuly E. Modifikaciya poverhnostnyh sloev nerzhaveyushih stalej azotirovaniem i nitrocementaciej [Modification of surface layers by stainless steel nitriding and nitrocementation]. Tomsk – 2013 – 147 s. [in Russian].
Sherzod Kurbanbekov, Маzhyn Skakov, Michail Scheffler, Azret Naltaev. Changes of Mechanical Properties of Steel 12Cr18Ni10Тi After Electrolytic-Plasma Cementation. – 2013. – №601. – P. 59–63. https://doi:10.4028/www.scientific.net/AMR.601.59
Béjar M.A., Henríquez R. Surface hardening of steel by plasma–electrolysis boronizing. // Materials & Design. – 2009. – №30. – 1726–1728. https://doi.org/10.1016/j.matdes.2008.07.006
Dyakov I.G., Burov S.V., Belkin P.N., Rozanov E.V., Zhukov S.A. Increasing wear and corrosion resistance of tool steel by anodic plasma electrolytic nitriding. // Surface and Coatings Technology. – 2019. – №362. – 124–131. https://doi.org/10.1016/j.surfcoat.2019.01.107