Biochar: An Effective Solution for Sustainable Agriculture and Ecosystem Restoration

53 1

Авторы

DOI:

https://doi.org/10.5281/zenodo.15743695

Ключевые слова:

Biochar, Organic Waste, Pyrolysis, Soil Fertility, Environmental Benefits

Аннотация

This article discusses various aspects related to biochar, its production, and its environmental and agricultural benefits. Biochar is a carbon-rich material produced from biomass through pyrolysis in conditions of limited oxygen. It possesses a range of beneficial properties, such as improving soil quality, increasing its fertility, enhancing crop yield, and carbon sequestration. Biochar helps retain nutrients, improves soil water retention, and reduces greenhouse gas emissions. Its application contributes to better seed germination, seedling growth, as well as increasing plant resistance to environmental stressors and diseases. The use of biochar in different doses and pyrolysis conditions can significantly enhance its effectiveness in agriculture and ecological rehabilitation. The use of biochar for the reclamation of contaminated soils reduces the availability of toxic substances, such as heavy metals and pesticides, making this material a promising tool for ecosystem restoration. Thus, biochar represents a promising solution for improving soil and ecosystem health, reducing pollution, and mitigating the impacts of climate change, providing new opportunities for sustainable agriculture and environmental protection.

Библиографические ссылки

Kumar, S., Lohan, S.K., Parihar, D.S. Biomass Energy from Agriculture. In: Rakshit, A., Biswas, A., Sarkar, D., Meena, V.S., Datta, R. (eds) Handbook of Energy Management in Agriculture. Springer, Singapore, 2023, pp 181-199 https://doi.org/10.1007/978-981-19-7736-7_10-1

Wang L., Rinklebe J., Sik Y., Daniel O., Daniel C.W.T. Biochar Composites : Emerging Trends, Field Successes and Sustainability Implications, Soil Use Manag, 2021, pp. 1-25, https://doi.org/10.1111/sum.12731

Guo,S., Li, Y., Wang, Y., Wang, L., Sun, Y., Liu, L. Recent advances in biochar-based adsorbents for CO2 capture. Carbon Capture Sci. Technol., 2022, 4, 100059.

Wang, D., Jiang, P., Zhang, H., and Yuan, W. Biochar production and applications in agro and forestry systems: a review. Sci. Total Environ., 2020, 723, 137775. https://doi.org/10.1016/j.scitotenv.2020.137775

Gasco, G., Cely, P., Paz-Ferreiro, J., Plaza, C., and Mendez, A. Relation between biochar properties and effects on seed germination and plant development. Biol. Agric. Hortic., 2016, 32, pp. 237-247. https://doi.org/10.1080/01448765.2016.1166348

Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., Han, W. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment Contam., 2019, 28, pp. 380-394.

Han, M., Zhang, J., Zhang, L., Wang, Z. Effectofbiochar addition on crop yield, water and nitrogen use efficiency: A meta-analysis. J. Clean. Prod., 2023, 420, 138425.

Ayaz, M., Feizienė, D., Tilvikienė, V., Akhtar, K., Stulpinaitė, U., and Iqbal, R. Biochar role in the sustainability of agriculture and environment. Sustainability, 2021, 13(3), 1330. https://doi.org/10.3390/su13031330

Ye, L., Camps-Arbestain, M., Shen, Q., Lehmann, J., Singh, B., & Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta- analysis of field studies using separate controls. Soil Use and Management, 2020, 36(1), pp. 2-18. https://doi.org/10.1111/sum.12546

Hue, N. Biochar for Maintaining Soil Health. In Soil Health; Giri, B., Varma, A., Eds.; Springer: Cham, Switzerland, 2020, pp. 21-46.

Solomon D., Lehmann J., Thies J., Schäfer T., Liang B., Kinyangi J., Neves E., Petersen J, Luizão F, Skjemstad J. Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths. Geochim Cosmochim Acta, 2007, 71: 2285-2298. https://doi.org/10.1016/j.gca.2007.02.014

Tiwari, A.K., Pal, D.B., Prasad, N. Agricultural waste biomass utilization in waste water treatment. In Utilization of Waste Biomass in Energy, Environment and Catalysis; CRC Press: Boca Raton, FL, USA, 2022, pp. 19-41.

Jayaraju RM, Gaddam K, Ravindiran G et al. Biochar from waste biomass as a biocatalyst for biodiesel production: an overview. Appl Nanosci., 2021, pp. 1-12. https://doi.org/10.1007/S13204-021-01924-2

Bhange VP., William SP., Sharma A., Gabhane J., Vaidya AN., Wate SR. Pretreatment of garden biomass using Fenton’s reagent: influence of Fe(2+) and H2O2 concentrations on lignocellulose degradation. J Environ Heal Sci Eng., 2015 13:12. https://doi.org/10.1186/s40201-015-0167-1

Pappu A., Saxena M., Asolekar SR. Solid wastes genera tion in India and their recycling potential in building materials. Build Environ., 2007, 42: 2311-2320. https://dx.doi.org/10.1016/j.buildenv.2006.04.015

Food and Agriculture Organization of the United Nations. Global forest resources assessment 2010 : main report. Food and Agriculture Organization of the United Nations.

Ravindiran, G., Rajamanickam, S., Janardhan, G. et al. Production and modifications of biochar to engineered materials and its application for environmental sustainability: a review. Biochar, 2024, 6, 62. https://doi.org/10.1007/s42773-024-00350-1

Zabed, H.M., Akter, S., Yun, J., Zhang, G., Awad, F.N., Qi, X., Sahu, J.N. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev., 2019, 105, pp. 105-128.

Chen, W.H., Lin, B.J., Lin, Y.Y., Chu, Y.S., Ubando, A.T., Show, P.L., Ong, H.C., Chang, J.S., Ho, S.H., Culaba, A.B., et al. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci., 2021, 82, 100887.

Jiang, Y., Zong, P., Ming, X., Wei, H., Zhang, X., Bao, Y., Tian, B., Tian, Y., Qiao, Y. High-temperature fast pyrolysis of coal: An applied basic research using thermal gravimetric analyzer and the downer reactor. Energy, 2021, 223, 119977.

Manyà JJ., García-Morcate D., González B. Adsorption performance of physically activated biochars for postcombustion CO2 capture from dry and humid flue gas. Appl Sci., 2020, 10: 376. https://doi.org/10.3390/APP10 010376

Enaime G., Baçaoui A., Yaacoubi A., Lübken M. Biochar for wastewater treatment - conversion technologies and applications. Appl Sci., 2020, 10: 3492. https://doi.org/10.3390/APP10103492

Z. Zhang, Z. Zhu, B. Shen, L. Liu, Insights into biochar and hydrochar production and applications:a review, Energy, 2019, 171, 581-598, https://doi.org/10.1016/j.energy.2019.01.035.

Pituello C., Francioso O., Simonetti G., Pisi A., Torreggiani A., Berti A. Characterization of chemical – physical, structural and morphological properties of biochars from biowastes produced at different temperatures, J. Soils Sediments, 2014, pp. 1-13, https://doi.org/10.1007/s11368-014-0964-7.

Murtaza G., Ahmed Z., Eldin SM., Ali B., Bawazeer S., Usman M., Iqbal R., Neupane D., Ullah A., Khan A., Hassan MU., Ali I and Tariq A. Biochar-Soil-Plant interactions: A cross talk for sustainable agriculture under changing climate. Front. Environ. Sci., 2023, 11: 1059449. https://doi.org/10.3389/fenvs.2023.1059449

Yuan H., Lu T., Huang H., et al. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J Anal Appl Pyrolysis, 2015, 112: 284-289. https://doi.org/10.1016/J. JAAP.2015.01.010

Shreya, D., Samanyita, M., Gayatri, S., Mausami, R., and Kiran, P. “Biochar: a sustainable approach for improving soil health and environment,” in Soil erosion current challenges and future perspectives in a changing World (London, UK: Intechopen), 2021.

Adekiya, A.O., Agbede, T.M., Olayanju, A., Ejue, W.S., Adekanye, T.A., Adenusi, T.T., et al. Effect of biochar on soil properties, soil loss, and cocoyam yield on a tropical sandy loam Alfisol. Scie World J., 2020, pp. 1-9. https://doi.org/10.1155/2020/9391630

Abhishek, K., Srivastava, A., Vimal, V., Gupta, A.K., Bhujbal, S.K., Biswas, J.K., et al. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. Sci. Total Environ., 2022, 853, 158562. https://doi.org/10.1016/j.scitotenv.2022.158562

Zhao, J., Shen, X.J., Domene, X., Alcañiz, J.M., Liao, X., and Palet, C. Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci. Rep., 2019, 9(1), 9869. https://doi.org/10.1038/s41598-019-46234-4

Chausali N., Saxena J., Prasad R. Nanobiochar and biochar based nanocomposites: advances and applications, J. Agric. Food Res., 2021, 5, 100191, https://doi.org/10.1016/j.jafr.2021.100191

Zhao W., Yang H., He S., et al. A review of biochar in anaerobic digestion to improve biogas production: performances, mechanisms and economic assessments. Bioresour Technol., 2021, 341: 125797. https://doi.org/10.1016/J. BIORTECH.2021.125797

Janus A., Pelfrêne A., Heymans S., Deboffe C., Douay F., Waterlot C. Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific over view on Miscanthus biochars. J Environ Manage, 2015, 162: 275-289. https://doi.org/10.1016/J.JENVMAN.2015.07.056

Quilliam RS., DeLuca TH., Jones DL. Biochar application reduces nodulation but increases nitrogenase activity in clover. Plant Soil, 2013, 366: 83-92. https://doi.org/10.1007/s1110 4-012-1411-4

Hafeez, Y., Iqbal, S., Jabeen, K., Shahzad, S., Jahan, S., and Rasul, F. Effect of biochar application on seed germination and seedling growth of Glycine max (l.) Merr. Under drought stress. Pak. J. Bot., 2017, 49, pp. 7-13.

Kumari, R., Kumar, V. & Kumar, A. Soil and Biochar: Attributes and Actions of Biochar for Reclamation of Soil and Mitigation of Soil Borne Plant Pathogens. J Soil Sci Plant Nutr, 2024, 24, pp. 1924-1939. https://doi.org/10.1007/s42729-024-01810-0

Liang P-W., Liao C-Y., Chueh C-C., Zuo F., Williams ST., Xin X-K., Lin J., Jen AK-Y. Additive enhanced crystallization of solution processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater., 2014, 26: 3748-3754. https://doi.org/10.1002/adma.201400231

Ajema, L. Effects of biochar application on beneficial soil organism. Int. J. Res. Stud. Sci. Eng. Technol., 2018, 5(5), 9-18.

Pokharel, P., Ma, Z., and Chang, S.X. Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities: a global meta-analysis. Biochar, 2020, 2, 65-79. https://doi.org/10.1007/s42773-020-00039-1

Narayanan, M., Ma, Y. Influences of Biochar on Bioremediation/Phytoremediation Potential of Metal-Contaminated Soils. Front. Microbiol., 2022, 13, 929730.

Parmar A., Nema P.K., Agarwal T. Biochar production from agro-food industry residues: a sustainable approach for soil and environmental management, Curr. Sci., 2014, 107, pp. 1673-1682.

Singh C., Tiwari S., Boudh S., Singh J.S. Biochar application in management of paddy crop production and methane mitigation, in: J.S. Singh, G. Seneviratne (Eds.), Agro-Environmental Sustainability, Springer International Publishing, Switzerland, 2017, pp. 123-145.

Song, B., Almatrafi, E., Tan, X., Luo, S., Xiong, W., Zhou, C., et al. Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality. Renew. Sustain. Energy Rev., 2022, 164, 112529. https://doi.org/10.1016/j.rser.2022.112529

Woolf D., Lehmann J., Cowie A., Cayuela ML., Whitman T., Sohi S. Biochar for climate change mitigation: navigating from science to evidence based policy. Soil and Climate, 2018, pp. 219-248.

Bo, X., Zhang, Z., Wang, J. et al. Benefits and limitations of biochar for climate-smart agriculture: a review and case study from China. Biochar, 2023, 5, 77. https://doi.org/10.1007/s42773-023-00279-x

Kalu, S., Kulmala, L., Zrim, J., Peltokangas, K., Tammeorg, P., Rasa, K., et al. Potential of biochar to reduce greenhouse gas emissions and increase nitrogen use efficiency in boreal arable soils in the long-term. Front. Environ. Sci., 2022, 10, 914766. https://doi.org/10.3389/fenvs.2022.914766

Yargicoglu, E.N., and Reddy, K.R. Microbial abundance and activity in biochar amended landfill cover soils: evidence from large-scale column and field experiments. J. Environ. Eng., 2017, 143(9), 04017058. https://doi.org/10.1061/(ASCE)EE.1943-7870.000125

Chen, D., Liu, X., Bian, R., Cheng, K., Zhang, X., Zheng, J., Joseph, S., Crowley, D., Pan, G., & Li, L. Effects of biochar on availability and plant uptake of heavy metals – A meta- analysis. Journal of Environmental Management, 2018, 222, pp. 76-85. https://doi.org/10.1016/j.jenvman.2018.05.004

Wang, L., O'Connor, D., Rinklebe, J., Ok, Y.S., Tsang, D.C.W., Shen, Z., & Hou, D. Biochar aging: Mechanisms, physicochem ical changes, assessment, and implications for field applications. Environmental Science & Technology, 2020, 54(23), pp. 14797-14814. https://doi.org/10.1021/acs.est.0c04033

Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y.S., Kirkham, M., & Rinklebe, J. Interaction of arsenic with biochar in soil and water: A critical review. Carbon, 2017, 113, pp. 219-230. https://doi.org/10.1016/j.carbon.2016.11.032

Загрузки

Опубликован

2025-03-25

Как цитировать

Yuldashbek, D. ., & Akhmetov, N. . (2025). Biochar: An Effective Solution for Sustainable Agriculture and Ecosystem Restoration. International Journal of Environmental Science and Green Technology, 1(1), 27–46. https://doi.org/10.5281/zenodo.15743695

Выпуск

Раздел

Статьи