The Prospects of Using Biogas: Technological Achievements, Ecological and Economic Efficiency, Development in Global Energy
63 2
DOI:
https://doi.org/10.5281/zenodo.15743654Ключевые слова:
Biogas, Methane, Energy, Organic Waste, Anaerobic DecompositionАннотация
This article examines various aspects related to biogas production, its technological features, economic advantages, and the challenges faced by the industry. Biogas, as an important renewable energy source, is a mixture of methane (CH4) and carbon dioxide (CO2) that forms during the anaerobic decomposition of organic materials. With the increasing environmental and economic issues associated with the use of fossil fuels, biogas has become a promising solution for reducing carbon emissions and recycling waste. The article analyzes global trends, current statistical data, and prognostic conclusions about the development of the biogas sector in the coming decades. It also focuses on the current state of biogas production in the world and Kazakhstan, as well as the potential for expanding this sector in the context of sustainable development.
Библиографические ссылки
Monga D, Shetti NP, Basu S, Kakarla RR (2023). Recent advances in various processes for clean and sustainable hydrogen production. Nano-Struct Nano-Objects 33:100948. https://doi.org/10.1016/j.nanoso.2023.100948.
Akinwumi OD, Dada EO, Agarry SE, Aremu MO, Agbede OO, Alade AO, Alao AI (2024). Effects of retention time, pH, temperature and type of fruit wastes on the bioelectricity generation performance of microbial fuel cell during the biotreatment of pharmaceutical wastewater: Experimental study, optimization and modelling. Environ Process 11:51. https://51.10.1007/s40710-024-00728-0.
Hasan MR, Anzar N, Sharma P, Malode SJ, Shetti NP, Narang J, Kakarla RR (2023). Converting biowaste into sustainable bioenergy through various processes. Bioresour Technol Rep 101542. https://doi.org/10.1016/j.biteb.2023.101542.
Hagos K, Zong P, Li D, Liu C, Lu X (2017). Anaerobic co-digestion process for biogas: progress, challegnes and perspectives. Renew Sustain Energy Rev 76:1485-1496. https://doi.org/10.1016/j.rser.2016.11.184.
De Carvalho, J. P., & Teixeira, L. C. R. S. (2024). Co-digestion’s perpective on biogas production from sewage sludge and food waste: a systematic review. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-024-05835-x.
Aghel B, Behaein S, Alobiad F. (2022). CO2 capture from biogas by biomass-based adsorbents: A review. Fuel, 328, Article 125276, https://doi.org/10.1016/j.fuel.2022.125276.
Li Y, Wang Z, He Z, Luo S, Su D, Jiang H, Zhou H, Xu Q (2020). Effects of temperature, hydrogen/carbon monoxide ratio and trace element addition on methane production performance from syngas biomethanation. Biores Technol 295:122296. https://doi.org/10.1016/j.biortech.2019.122296
Deng, R., Wu, J., Huang, Z. et al. (2024). Biogas to chemicals: a review of the state-of-the-art conversion processes. Biomass Conv. Bioref. https://doi.org/10.1007/s13399-024-06343-1.
Sengur, O., Akgul, D. & Calli, B. (2024). In situ methane enrichment with vacuum application to produce biogas with higher methane content. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-024-33881-y.
Bedoić R, Ćosić B, Pukšec T, Duić N (2020). Anaerobic digestion of agri-food by-products. Introduction to Biosystems Engineering. Am. Soc. Agric. Biol. Eng (ASABE) in association with Virginia Tech, Blacksburg, VA, 1-23. https://doi.org/10.21061/IntroBiosystemsEngineering/Anerobic_Digestion.
Kiselev, A., Magaril, E. & Karaeva, A. (2024). Environmental and economic efficiency assessment of biogas energy projects in terms of greenhouse gas emissions. Energ. Ecol. Environ. 9, 68-83. https://doi.org/10.1007/s40974-023-00305-5.
IEA (International Energy Agency): Outlook for biogas and biometh ane – Prospects for organic growth. (2020). International Energy Agency. https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth Published March 2020.
Gustafsson, M., Meneghetti, R., Souza Marques, F., Trim, H., Dong, R., Al Saedi, T., Rasi, S., Thual, J., Kornatz, P., Wall, D., Berntsen, C., Saxegaard, S., Lyng, K.A., Nägele, H.J., Heaven, S., Bywater, A. (2024). A perspective on the state of the biogas industry from selected member countries. Gustafsson, M., Liebetrau, J. (Ed.) IEA Bioenergy Task 37, 2024:2.
Marcucci, S. M. P., Rosa, R. A., Lenzi, G. G., Balthazar, J. M., Fuziki, M. E. K., & Tusset, A. M. (2025). Biogas Overview: Global and Brazilian Perspectives with Emphasis on Paraná State. Sustainability, 17(1), 321. https://doi.org/10.3390/su17010321.
Abanades, S., Abbaspour, H., Ahmadi, A. et al. (2022). A critical review of biogas production and usage with legislations framework across the globe. Int. J. Environ. Sci. Technol. 19, 3377-3400. https://doi.org/10.1007/s13762-021-03301-6.
A. Akhiar, M.F.M.A. Zamri, M. Torrijos, A. Battimelli, E. Roslan, M.H.M. Marzuki, et al. (2020). Anaerobic digestion industries progress throughout the world IOP Conference Series: Earth Environ Sci, 476, IOP Publishing, p.p. 012074. DOI 10.1088/1755-1315/476/1/012074.
Bórawski, P., Bełdycka-Bórawska, A., Kapsdorferová, Z., Rokicki, T., Parzonko, A., & Holden, L. (2024). Perspectives of Electricity Production from Biogas in the European Union. Energies, 17(5), 1169. https://doi.org/10.3390/en17051169.
Chang, Y., Stinner, W. & Thraen, D. (2024). Value creation of straw-based biogas in China. Energ Sustain Soc 14, 62. https://doi.org/10.1186/s13705-024-00492-x.
Murray, B.C., Galik, C.S. & Vegh, T. (2017). Biogas in the United States: estimating future production and learning from international experiences. Mitig Adapt Strateg Glob Change 22, 485-501. https://doi.org/10.1007/s11027-015-9683-7.
Kazakhstan has launched the first biogas plant in Central Asia with a capacity of 0.5 MW // Alternative energy sources. [Electronic resource], 2017. URL: https://neftegaz.ru/.
Kalymov A. A farmer from the Almaty region has developed a unique biogas plant // Technologies EXPO-2017. [Electronic resource], 2015. URL: https://kazpravda.kz/.
Sailauov D.M. (2021). Overview of the development of the biogas industry and prospects for the introduction of biogas plants (bgp) in Kazakhstan // Science, technology and education, №5 (80), pp. 26-31. URL: https://cyberleninka.ru/article/n/obzor-razvitiya-biogazovoy-otrasli-i-perspektivy-vnedreniya-biogazovyh-ustanovok-bgu-v-kazahstane.
Wang, Z., et al. (2020). "Biogas production through anaerobic digestion of food waste: A comprehensive review." Bioresource Technology, 310, 123387. https://doi.org/10.1016/j.biortech.2020.123387.
Vasudevan, N., & Reddy, P. (2021). "Application of biogas technology for waste management in rural areas." Environmental Technology & Innovation, 22, 100865. https://doi.org/10.1016/j.eti.2021.10086.
Ariunbold, G., et al. (2022). "Performance of anaerobic digestion for biogas production from animal manure and agricultural residues: A review." Renewable Energy, 170, 1092-1105. https://doi.org/10.1016/j.renene.2021.12.080.
Sánchez, M., et al. (2020). "Microbial diversity and biogas production from the co-digestion of municipal waste and food waste." Journal of Environmental Management, 276, 111328. https://doi.org/10.1016/j.jenvman.2020.111328.
Huang, J., et al. (2020). "Recent advances in biogas production from agricultural residues and municipal waste." Waste Management, 104, 129-143. https://doi.org/10.1016/j.wasman.2020.02.014.
Mishra, S., Banerjee, A., Chattaraj, S. et al. (2024). Microbial process in anaerobic digestion of food wastes for biogas production: a review. Syst Microbiol and Biomanuf. https://doi.org/10.1007/s43393-024-00303-6.
Zhao, L., et al. (2020). "Application of biochar in biogas production from organic waste: A review." Bioresource Technology, 309, 123352. https://doi.org/10.1016/j.biortech.2020.123352.
Gupta P, Kurien C, Mittal M. (2023). Biogas (a promising bio energy source): a critical review on the potential of biogas as a sustainable energy source for gaseous fuelled spark ignition engines. Int J Hydrogen Energy, 48(21): 7747-7769. https://doi.org/10.1016/j.ijhydene.2022.11.195.
Li Y, Wang Z, Li T, Jiang S, Sun Z, Jiang H, Qian M, Zhou H, Xu Q. (2020). Changes in microbial community and methano genesis during high-solid anaerobic digestion of ensiled corn stover. J Clean Prod, 242:118479. https://doi.org/10.1016/j.jclepro.2019.118479.
Alengebawy, A., Ran, Y., Osman, A.I. et al. (2024). Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: a review. Environ Chem Lett 22, 2641-2668. https://doi.org/10.1007/s10311-024-01789-1.
Menzel, T., Neubauer, P., & Junne, S. (2020). Role of Microbial Hydrolysis in Anaerobic Digestion. Energies, 13(21), 5555. https://doi.org/10.3390/en13215555.
J. Ma, Q.B. Zhao, L.L.M. Laurens, E.E. Jarvis, N.J. Nagle, S. Chen, C.S. Frear. (2015). Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol. Biofuels, 8 (1), p. 141.
K.C. Surendra, D. Takara, A.G. Hashimoto, S.K. Khanal. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renew. Sustain. Energy Rev., 31 (2), pp. 846-859.
Zhang, Y., et al. (2022). "Methanogenesis in biogas production: Insights into microbial communities and process optimization." Renewable Energy, 167, 824-835. https://doi.org/10.1016/j.renene.2020.12.115.
Sánchez, M., et al. (2019). "The role of bacteria in the anaerobic digestion process: Current state and future challenges." Waste Management, 98, 86-101. https://doi.org/10.1016/j.wasman.2019.08.007.
Tukanghan W, Hupfauf S, Gómez-Brandón M, Insam H, Salvenmoser W, Prasertsan P, Cheirsilp B, O-Thong S. (2021). Symbiotic bacteroides and Clostridium-rich methanogenic consortium enhanced biogas production of high-solid anaerobic digestion systems. Bioresour Technol Rep 14:100685 https://doi.org/10.1016/j.biteb.2021.100685.
J. Lansche, J. Müller. (2017). Life cycle assessment (LCA) of biogas versus dung combustion household cooking systems in developing countries – A case study in Ethiopia. J. Clean. Prod., 165 (1), pp. 828-835.
Wang, X., et al. (2021). "Methanogenesis in the co-digestion of organic waste with animal manure: A review." Renewable and Sustainable Energy Reviews, 149, 111359. https://doi.org/10.1016/j.rser.2021.111359.
Kabeyi, M.J.B. and Olanrewaju, O.A. (2022). Biogas Production and Applications in the Sustainable Energy Transition. J. Energy, 1-43, https://doi.org/10.1155/2022/8750221.
IRENA. (2018). Biogas for road vehicles: Technology brief, International Renewable Energy Agency, Abu Dhabi.
Skibko, Z., Romaniuk, W., Borusiewicz, A., Porwisiak, H. (2021). Use of pellets from agricultural biogas plants in fertilization of oxytrees in Podlasie, Poland. J. Water Land Dev., 51, 124-128.
Tymińska, M., Skibko, Z., & Borusiewicz, A. (2023). The Effect of Agricultural Biogas Plants on the Quality of Farm Energy Supply. Energies, 16(12), 4600. https://doi.org/10.3390/en16124600.
Kumar R., Jilte R., and Ahmadi M. H. (2018). Electricity alternative for e-rickshaws: an approach towards green city, International Journal of Intelligent Enterprise (IJIE), 5, no. 4, 333-344, https://doi.org/10.1504/IJIE.2018.10016762.
Biogas magazine, USA Preparet by BiogasWorld, (2024), Issue 3, [Electronic resource] URL: https://catalog.biogascommunity.com/biogas-magazine-usa/full-view.html?utm_campaign=Biogas+Magazine+-+USA&utm_source=adwords&utm_term=biogas&utm_medium=ppc&hsa_ad=705240933349&hsa_grp=167478394547&hsa_kw=biogas&hsa_ver=3&hsa_net=adwords&hsa_acc=1548365801&hsa_src=g&hsa_cam=21452933690&hsa_mt=b&hsa_tgt=kwd-298559198608&gad_source=1&gclid=Cj0KCQiA_Yq-BhC9ARIsAA6fbAjwmvyHNtV0xi7QWkBT5VI9zposOcETu_BH79fDi1_6n65kNdmDpbUaArJbEALw_wcB.
Paolini, V., Petracchini, F., Segreto, M., Tomassetti, L., Naja, N., & Cecinato, A. (2018). Environmental impact of biogas: A short review of current knowledge. Journal of Environmental Science and Health, Part A, 53(10), 899-906. https://doi.org/10.1080/10934529.2018.1459076.
Pizarro-Loaiza C., Antón A., Torrellas M., Torres-Lozada P., Palatsi J., Bonmatí A. (2021). Environmental, social and health benefits of alternative renewable energy sources. Case study for household biogas digesters in rural areas. J. Clean. Prod., 297, Article 126722, 10.1016/j.jclepro.2021.126722.
Sarkar, S., Kumar, A., & Patel, S. (2021). "Biogas production from agricultural waste: Current trends and future perspectives." Renewable and Sustainable Energy Reviews, 141, 110728. https://doi.org/10.1016/j.rser.2021.110728.
Sarkar, S., Kumar, A., & Patel, S. (2021). "Biogas production from agricultural waste: Current trends and future perspectives." Renewable and Sustainable Energy Reviews, 141, 110728. https://doi.org/10.1016/j.rser.2021.110728