Applıcatıon Desıgns to Measure the Mathematıcal Reasonıng Skılls of Teacher Candidates
40 108
Keywords:
: Classroom education, Pre-service teachers, Mathematical reasoning, Reasoning skills, Primary school students.Abstract
Mathematical reasoning can be defined as the ability of individuals to approach
situations they encounter from a mathematical perspective, to investigate the cause and effect, to
make sense of the situation, and to make reasoning that will help reach a logical conclusion by
using mathematical concepts and symbols. The purpose of the research is to evaluate the mathematical application designs of primary
school teacher candidates studying at Khoja Akhmet Yassawi International Kazakh-Turkish
University in order to measure the mathematical reasoning skills of primary school students. For
this purpose, at the primary school level, teacher candidates will be asked to (a) identify and use
appropriate reasoning, (b) recognize and use mathematical knowledge / patterns / structures /
general properties, (c) recognize different representations of the same data, (d) predict, (e)
Developing logical arguments regarding the solution, (f) Deciding on the correctness of the
solution/result, (g) Making generalizations, and (h) Solving non-routine problems.
In this respect, the research was designed in the case study pattern, one of the qualitative
research methods. The study group of the research includes a total of 16 teacher candidates
representing different grade levels. Typical case sampling method was used to select the teacher
candidates in the study group.
Pre-service teachers were asked to develop application designs in which they could evaluate
the mathematical reasoning sub-dimensions mentioned above. In the research, the theoretical
framework was scanned, and an application was carried out to 16 teacher candidates and at the end of the application, the teacher candidates were able to design questions for all their reasoning skills. When the questions they prepared were evaluated, it was seen that the question objectives met some of those stated in the literature.
References
Umay A. Matematiksel Muhakeme Yeteneği // Hacettepe Üniversitesi Eğitim Fakültesi Dergisi. – 2003.
– №24. – s. 234–243.
NCTM Curriculum and Evaluation Standards for School Mathematics: Responses from the Research
Community // Journal for Research in Mathematics Education. – 1988. – №19 (4). – P. 338–344.
NAEP, Mathematics Framework for the 2022 and 2024 National Assessment of Educational Progress. –
Washington, DC: National Assessment Governing Board, 2022. – 96 p.
Olkun S., Toluk Z. Matematik Öğretimi. – Ankara: Anı Yayıncılık, 2014. – 280 s.
Bell A.W. The learning of process aspects of mathematics // Educational Studies in Mathematics. –
– №10 (3). – P. 361–387.
Adair J. Decision making and problem solving. Break Through Barriers and Banish Uncertainty at
Work. – Kogan Page Boks. – 2022. – Т. 167. – 120 p.
Kalaycı N. Karar Verme ve Problem Çözme. – Ankara: Pegem Yayınevi, 2017. – 108 s.
Ersever H.Ö. Karar Verme Becerileri Kazandırma Programının ve Etkileşim Grubu Deneyiminin
Üniversite Öğrencilerinin Karar Verme Stilleri Üzerindeki Etkileri: Yayınlanmamış Doktora Tezi. –
Ankara: A.Ü. Sosyal Bilimler Enstitüsü, 1996. –233 s.
Polya G. How to Solve It. – New Jersey: Princeton University Press, 2014. – 288 p.
Алибекова Ж.Д., Мейрбекова Г.П., Қошанова Г.Д. Математикалық модельдеу әдісін қолдану
арқылы оқушылардың математикалық ойлау қабілетін қалыптастыру // Ясауи университетінің
хабаршысы. – 2022. – №4(126). – Б. 212–224. https://doi.org/10.47526/2022-4/2664-0686.18
Utaminingsih S., Andi P., Irfai F., Kuzmina A.M. Development of Video-Aided Storybooks to
Improve Understanding of Mathematical Concepts in Elementary School // Ясауи университетінің
хабаршысы. – 2022. – №2(124). – Б. 194–206. https://doi.org/10.47526/2022-2/2664-0686.16
Van de Walle J.A. Elementary and Middle School Mathematics Teaching Developmentally. – USA:
Pearson Education, 2004. – 576 p.
Hacısalihoglu H., Mirasyedioğlu S., Akpınar A. Matematik Öğretimi 1-5. – Ankara: Asil Yayın
Dağıtım, 2003. – 243 s.
Kuhn D., Udel W. The Development of Argument Skills // Child Development. – 2003. – №74(5). – P.
–1260.
Jurow A.S. Generalizing in Interaction: Middle School Mathematics Students Making Mathematical
Generalizations in a Population-Modeling Project // Mind, Culture and Activity. – 2004. – №11(4). – P.
–300.
Altun M. İlkokullarda Matematik Öğretimi. – Bursa: Ekin Yayınevi, 2022. – 462 s.
Umay A. Matematiksel Muhakeme Yeteneği [Mathematical Reasoning Ability] // Hacettepe
Üniversitesi Eğitim Fakültesi Dergisi. – 2003. – №24. – S. 234–243. [in Turkish]
NCTM Curriculum and Evaluation Standards for School Mathematics: Responses from the Research
Community // Journal for Research in Mathematics Education. – 1988. – №19 (4). – P. 338–344.
NAEP, Mathematics Framework for the 2022 and 2024 National Assessment of Educational Progress. –
Washington, DC: National Assessment Governing Board, 2022. – 96 p.
Olkun S., Toluk Z. Matematik Öğretimi [Teaching Mathematics]. – Ankara: Anı Yayıncılık, 2014. –
s. [in Turkish]
Bell A.W. The learning of process aspects of mathematics // Educational Studies in Mathematics. –
– №10 (3). – P. 361–387.
Adair J. Decision making and problem solving. Break Through Barriers and Banish Uncertainty at
Work. – Kogan Page Boks. – 2022. – Т. 167. – 120 p.
Kalaycı N. Karar Verme ve Problem Çözme [Decision Making and Problem Solving]. – Ankara: Pegem
Yayınevi, 2017. – 108 s. [in Turkish]
Ersever H.Ö. Karar Verme Becerileri Kazandırma Programının ve Etkileşim Grubu Deneyiminin
Üniversite Öğrencilerinin Karar Verme Stilleri Üzerindeki Etkileri [The Effects of Decision-Making
Skills Acquisition Program and Interaction Group Experience on University Students' Decision-Making
Styles]: Yayınlanmamış Doktora Tezi. – Ankara: A.Ü. Sosyal Bilimler Enstitüsü, 1996. – 233 s. [in
Turkish]
Polya G. How to Solve It. – New Jersey: Princeton University Press, 2014. – 288 p.
Alibekova J.D., Meirbekova G.P., Qoshanova G.D. Matematikalyq modeldeu adisin qoldanu
arqyly oqushylardyn matematikalyq oilau qabiletin qalyptastyru [Formation of Mathematical Thinking
in Students Using the Method of Mathematical Modeling] // Iasaui universitetіnіn habarshysy. –
– №4(126). – B. 212–224. https://doi.org/10.47526/2022-4/2664-0686.18 [in kazakh]
Utaminingsih S., Andi P., Irfai F., Kuzmina A.M. Development of Video-Aided Storybooks to
Improve Understanding of Mathematical Concepts in Elementary School // Iasaui universitetіnіn
habarshysy. – 2022. – №2 (124). – B. 194–206. https://doi.org/10.47526/2022-2/2664-0686.16
Van de Walle J.A. Elementary and Middle School Mathematics Teaching Developmentally. – USA:
Pearson Education, 2004. – 576 p.
Hacısalihoglu H., Mirasyedioğlu S., Akpınar A. Matematik Öğretimi 1-5 [Teaching Mathematics 1-5]. –
Ankara: Asil Yayın Dağıtım, 2003. – 243 s. [in Turkish]
Kuhn D., Udel W. The Development of Argument Skills // Child Development. – 2003. – №74(5). – P.
–1260.
Jurow A.S. Generalizing in Interaction: Middle School Mathematics Students Making Mathematical
Generalizations in a Population-Modeling Project // Mind, Culture and Activity. – 2004. – №11(4). – P.
–300.
Altun M. İlkokullarda Matematik Öğretimi [Teaching Mathematics in Primary Schools]. – Bursa: Ekin
Yayınevi, 2022. – 462 s. [in Turkish]