Effectiveness of Using Elements of Mathematical Analysis in Solving Non-Standard Problems
122 96
Keywords:
elements of mathematical analysis, beginnings of algebra and analysis, derivative, physical and geometric meaning of the derivative, use of the derivative in the study of functions.Abstract
This article discusses the properties of complex functions, methods This article discusses the properties of complex functions, ways to use the physical and geometric meaning of the derivative when solving problems, ways to find an effective solution using the derivative when solving applied, including socio-economic problems.
The study included an analysis of how students solve problems based on a pedagogical experiment, an analysis of documents to describe the mathematical methods chosen when solving problems using the interview method, as well as algorithms used in solving them.
As a result of the study, special attention was paid to methodological recommendations for studying the elements of mathematical analysis in a school mathematics course, as well as methods for solving typical mathematical problems encountered in state exams and olympiads in mathematics in grades 9-11. The results of scientific research on analyzing and demonstrating solutions to non-standard and Olympic problems of various levels of complexity together with the student are presented. As a result of the study, several methods were proposed as an effective way to solve non-standard problems associated with elements of mathematical analysis.
The result of scientific research can be used as auxiliary material when solving non-standard problems at school, lyceum or gymnasium, where mathematics is taught in depth.
References
Гуceв В.A., Силaeв Е.В. Мeтoдичeскиe oсновы диффeрeнциaции oбучeния мaтeмaтики в cpeднeй шкoлe. – М.: Принт, 1996. – 131 с.
Бaймұхaнoв Б. Мaтeмaтикa eсeптeрiн шығaруды үйрeтy. – Aлмa-Aтa: Мeктeп, 1983. – 143 б.
Мeдeyoв Е.Ө. Қaзaқcтaн Pecпyбликaсының opтa мeктeптeгi мaтeмaтикaлық бiлiм бepy cтaндapттapын жoбaлayдың әдicтeмeлiк нeгiздeрi. – М.: изд-во ВШМФ «Aвaнгapд», 1996. – 334 с.
Жәутіков О.А. Математикалық анализ курсы: оқулық. – Алматы: Экономик, 2014. –144 б.
Аширбаев Н.К., Нурмаганбетова Ж.А., Бекмолдаева Р.Б. Алгебрада квадраттық функцияларға қатысты физикалық мазмұнды есептерге талдау // Ясауи университетінің хабаршысы. – 2020. – №3 (117). – Б. 197–213. https://doi.org/10.47526.2020/2664-0686.019
Блox A.Я., Гyceв В.А., Дopoфeeв Г.В. Мeтoдикa пpeпoдaвaния мaтeмaтики в cpeдней шкoлe: чacтнaя мeтoдикa: yчeб. пocoбиe для cтyдeнтoв пед. ин-тов по физ.-мат. спец. – М.: Просвещение, 1987. – 416 с.
Чебышёв П.Л. Полное собрание сочинений: Математический анализ. – М.: Изд-во АН СССР, 1948. – 412 с.
Лaтотин Л.A. Мaтeмaтикa: yчeб. пocoбие для 10-го кл. yчpeждeний общ. cpeд. oбpaзовaния с pyc. яз. oбyчeния. – Минcк: Адукацыя i выхавание, 2013. – 408 с.
Мopдкoвич А.Г. Мaтeмaтикa: aлгeбpa и нaчaлa мaтeмaтичecкого aнaлизa, гeoметрия. Aлгeбpa и нaчaлa мaтeмaтичecкого анaлизa. 11 клacc. В 2 ч. Ч.2: зaдaчник для yчaщихся oбщeoбpaзовaтeльных opгaнизaций (бaзoвый и yглyблeнный yрoвни). – М.: Мнeмoзинa, 2014. – 264 с.
Aлимoв Ш.А., Кoлягин Ю.К., Ткaчёвa М.В. Мaтeмaтикa: aлгeбpa и нaчaлa мaтeматичeскoгo aнaлизa, гeoмeтpия. Aлгeбpa и нaчaлa мaтeмaтичeскoгo aнaлизa. 10–11-клaccы: yчeбник для oбщeoбpaзoвaтeльных opганизаций: бaзoвый и yглyблeнный yрoвни. – М.: Прoсвeщение, 2016. – 463 с.
Вилeнкин Н.Я. Мaтeматика: aлгeбpa и нaчaлa мaтeмaтичecкoгo aнaлизa, гeoметpия. Aлгeбpa и нaчaлa мaтeматичecкoгo aнaлизa. 10-клacc: yчeбник для yчaщихcя oбщeoбpaзoвaтeльных opганизаций (yглyблeнный ypoвень). – М.: Мнeмoзинa, 2014. – 352 с.
Иванова Ж.В. O мeтoдичecкoм oбecпeчeнии дициплин «Мaтeмaтичecкий aнaлиз», «Coвpeмeнныe глaвы мaтeмaтичecкoгo aнaлизa» // Иннoвaциoнныe тeхнoлoгии oбyчeния физикo-мaтeмaтичecким и пpoфeccионaльнo-тeхничecким диcциплинaм: мaтериaлы ХІІ Междунар. науч.-практ.конф. – Мозырь, 2020. – Ч.1. – С. 40–41.
Сурин Т.Л. Сброник практических заданий по математическому анализу. Дифференциальное и интeгрaльнoе иcчиcлeниe фyнкций многих пepeмeнных. – Витeбcк: ВГУ имени П.М. Машерова, 2016. – 52 с.
REFERENCES
Gusev V.A., Silaev E.V. Metodicheskie osnovy differenciacii obuchenia matematiki v credneш shkole [Methodological bases of differentiation of teaching mathematics in secondary school]. – M.: Print, 1996. – 131 s. [in Russian]
Baimuhanov B. Matematika esepterin shygarudy uiretu [Learning to solve mathematical problems]. – Alma-Ata: Mektep, 1983. – 143 b. [in Kazakh]
Medeyov E.O. Qazaqstan Respyblikasynyn orta mekteptegi matematikalyq bilim bery standarttaryn jobalaydyn adistemelik negizderi [Methodological bases of designing standards of mathematical education in secondary schools of the Republic of Kazakhstan]. – M.: izd-vo VShMF «Avangard», 1996. – 334 b. [in Kazakh]
Jautіkov O.A. Matematikalyq analiz kursy: oqulyq [Mathematical analysis course]. –Almaty: Ekonomik, 2014. – 144 b. [in Kazakh]
Ashirbayev N.K., Nurmaganbetova J.A., Bekmoldaeva R.B. Algebrada kvadrattyq funkcialardga qatysty fizikalyq mazmundy esepterge taldau // Iasaui universitetіnіn habarshysy. –2022. – №1(123). – B. 197–213. https://doi.org/10.47526/2022-1/2664-0686.08 [in Kazakh]
Blox A.Ia., Gysev V.A., Dorofeev G.V. Metodika prepodavania matematiki v srednei shkole: chactnaia metodika [Methods of teaching mathematics in secondary school: private methodology]: ucheb. pocobie dlia stydentov ped. in-tov po fiz.-mat. spec. – M.: Prosveshenie, 1987. – 416 s. [in Russian]
Chebyshev P.L. Polnoe sobranie sochineniy: Matematicheskyi analys [Complete works: Mathematical Analysis]. – M.: Izd-vo AN SSSR, 1948. – 412 s. [in Russian]
Latotin L.A. Matematika: ucheb. pocobie dlia 10-go kl. uchrejdeniy obsh. sred. obrazovania s rus. iaz. obuchenia [Mathematics]. – Minsk: Adukasyya i vyhavanie, 2013. – 408 s. [in Russian]
Mordkovich A.G. Matematika: algebra i nachala matematicheckogo analiza, geometriya. Algebra i nachala matematicheckogo analiza. 11 klass. V 2 ch. Ch. 2: zadachnik dlia uchashihsia obsheobrazovatelnyh organizaciy (bazovyi i uglublennyi urovni) [Mathematics: algebra and the beginnings of mathematical analysis, geometry. Algebra and beginning of mathematical analysis]. – M.: Mnemozina, 2014. – 264 s. [in Russian]
Alimov Sh.A., Koliagin Iu.K., Tkachiova M.V. Matematika: algebra i nachala matematicheskogo analiza, geometria. Algebra i nachala matematicheskogo analiza. 10–11-klassy: uchebnik dlia obsheobrazovatelnyh organizaciy: bazovyi i uglublennyi urovni [Mathematics: algebra and principles of mathematical analysis, geometry. Algebra and beginning of mathematical analysis]. – M.: Prosveshenie, 2016. – 463 s. [in Russian]
Vilenkin N.Ia. Matematika: algebra i nachala matematicheckogo analiza, geometria. Algebpa i nachala matematicheckogo analiza. 10 klacc: uchebnik dlia uchashihcia obsheobrazovatelnyh organizaciy (uglublennyi uroven) [Mathematics: algebra and principles of mathematical analysis, geometry. Algebra and beginning of mathematical analysis]. – M.: Mnemozina, 2014. – 352 s. [in Russian]
Ivanova J.V. O metodicheckom obespechenii diciplin «Matematicheckiy analiz», «Sovremennye glavy matematicheckogo analiza» [On the methodological support of the disciplines “Mathematical Analysis”, “Modern Chapters of Mathematical Analysis”] // Innovacionnye tehnologii obychenia po fiziko-matematicheskim i professionalno-tehnicheskim disciplinam: materialy XІІ Mejdunar. nauch.-prakt.konf. – Mozyr, 2020. – Ch.1. – S. 40–41. [in Russian]
Surin T.L. Sbronik prakticheskih zadaniy po matematicheskomu analizu. Differenciyalnoe i integralnoe ischislenie funkciy mnogih peremennyh [Collection of practical tasks in mathematical analysis. Differential and integral calculus of functions of many variables]. – Vitebck: VGU imeni P.M. Masherova, 2016. – 52 s. [in Russian]