Formation of Mathematical Thinking in Students Using the Method of Mathematical Modeling
94 245
Keywords:
mathematical modeling, mathematical thinking, mathematical concept, applied problem, problem with practical content.Abstract
This article indicates and describes the formation of students' skills in mathematical thinking, shows the connection of mathematics with other disciplines by solving problems with the practical content of the school mathematics course using the method of mathematical modeling.
The main goal of mathematics education is the intellectual development of students, the formation of thinking skills necessary for a person to live a full life in society. Therefore, in mathematics lessons, it is better to use pedagogical methods and technologies that develop students'
creative and critical thinking.
Modeling is an important tool for teaching students how to solve problems and understand the world around them. Simulation teaches the child in ways that allow him to independently work on solving problems. In a broad sense, a model is defined as a reflection of the most important properties of an object. When getting acquainted with the models of algebra and beginnings of analysis, students are shown that the connection between mathematics and its applications is carried out with the help of mathematical models.
Mathematical modeling shows that all components of mathematical thinking develop, for example, functional thinking, which is characterized by the sensation of the development of general and individual relations between mathematical objects or their properties, clearly visible in
connection with the idea of a function.
References
ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР ТІЗІМІ
Бекболғанова А.Қ., Умиргалиева А.Б. Мeктeптeгі мaтeмaтикa куpcындaғы мaтeмaтикaлық aнaлиз элeмeнттepінің opны мeн poлі // Абай атындағы ҚазҰПУ Хабаршысы. “Физика-математика ғылымдары” сериясы. – 2018. – №1 (61). – Б. 37–42.
Гамезо М.В. Знаки и знаковое моделирование в познавательной деятельности: дисс. ... докт. псих. наук. – М., 1997. – 373 с.
Әбілқасымова А.Е., Кучер Т.П., Корчевский В.Е., Жұмағұлова З.Ә. Алгебра: жалпы білім беретін мектептің 7-сыныбына арналған оқулық. – Алматы: Мектеп, 2017. – 272 б.
Қасқатаева Б.Р., Кокажаева А.Б., Қазыбек Ж. Математикалық модельдеу оқушылардың математикалық сауаттылығын арттыру құралы ретінде // Қазақ ұлттық қыздар педагогикалық университетінің Хабаршысы. – 2021. – №1(85). – Б. 58–67.
Соболев С.Л. Судить по конечному результату // Математика в школе. – 1984. – №1. – С. 5–19.
Arseven A. Mathematical Modelling Approach in Mathematics Education // Universal Journal of Educational Research. – 2015. – Vol 3(12), No 3. – P. 973–980.
Boaler J. Mathematical Modelling and New Theories of Learning // Teaching Mathematics and its Applications. – 2001. – Vol. 20. – P. 121–128.
Бeкболгaновa A.К., Туралық М.Б. Мoдeльдeуді пaйдaлaну – oқытудың қoлдaнбaлығын күшeйтудің нeгізгі біp шapты // Абай атындағы ҚазҰПУ Хабаршысы, “Физика-математика ғылымдары” сериясы. – 2018. – №1 (61). – Б. 33–37.
Петерсон Л.Г. Математическое моделирование как методологический принцип построения программы школьного курса математики // Содержание, методы и формы развивающего обучения математике в школе и вузе. – 1999. – №2. – С. 30–33.
Blum W., Borromeo, Ferri R. Mathematical Modelling: Can It Be Taught And Learnt? // Journal of Mathematical Modelling and Application. – 2009. – Vol. 1, No. 1. – P. 45–58.
REFERENCES
Bekbolganova A.K., Umirgaiyeva A.B. Mekteptegi matematika kursynadgy matematikalyk analyz elementterinin orny men roli [The role and place of the elements of mathematical analysis in the field of school mathematics] // Abay atyndagy QazUPU Habarshysy. “Fizika-matematika gylymdary” seriyasy. – 2018. – №1 (61). – B. 37–42. [in Kazakh]
Gamezo M.V. Znaki I znakovoye modelirovaniye v poznavatelnoy deyatelnosti [Signs and sign modeling in cognitive activity]: diss. … dokt. psych. nauk. – М., 1997. – 373 s. [in Russian]
Abilkasymova A.E., Kucher T.P., Korchevskiy V.E., Jumagulova Z.A. Algebra. Jalpy bilim beretin mekteptin 7-synybyna arnalgan oqulyq [Algebra. Textbook for 7th grade of secondary school]. – Almaty: Mektep, 2017. – 272 b. [in Kazakh]
Kaskatayeva B.R., Kokazhayeva B.R., Kazybek Zh. Matematikalyq modeldeu oqushylardyn matematikalyq sauattylygyn arttyru quraly retinde [Mathematical modeling as a tool to improve students' mathematical literacy] // Qazaq ulttyq qyzdar pedagogikalyq universitetinin habarsysy. – 2021. – №1(85). – B. 58–67. [in Kazakh]
Sobolev S.L. Sudit po konechnomu rezultatu [Judging by the end result] // Matematika v shkole. – 1984. – №1. – S. 5–19. [in Russian]
Arseven A. Mathematical Modelling Approach in Mathematics Education // Universal Journal of Educational Research. – 2015. – Vol 3(12), No 3. – P. 973–980.
Boaler J. Mathematical Modelling and New Theories of Learning // Teaching Mathematics and its Applications. – 2001. – Vol. 20. – P. 121–128.
Bekbolganova A.K., Turalyk M.B. Modeldeudi paidalanu – oqitudyn qoldanbalygin kusheitudin negizgi bir sharty [The use of modeling is one of the main ways to strengthen the application of teaching] // Abay atyndagy QazUPU Habarshysy. “Fizika-matematika gylymdary” seriyasy. – 2018. – №1 (61). – B. 33–37. [in Kazakh]
Peterson L.G. Matematicheskoye modelirovaniye kak metodologicheskiy princip postroeniya programmy shkolnogo kursa matematiki [Mathematical modeling as a methodological principle for constructing a curriculum for a school course in mathematics] // Soderzhanie, metody i formy razvivajushhego obuchenija matematike v shkole i vuze. – 1999. – №2. – S. 30–33. [in Russian]
Blum W., Borromeo, Ferri R. Mathematical Modelling: Can It Be Taught And Learnt? // Journal of Mathematical Modelling and Application. – 2009. – Vol. 1, No. 1. – P. 45–58.