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APPLICATION OF MACHINE LEARNING ALGORITHMS IN DETECTING MALICIOUS
SOFTWARE APPLICATIONS ON THE ANDROID PLATFORM
ANDROID IINIAT®OPMACBIHAA 3UAH/AbI BAFTAPJIAMAJIBIK KOCBIMIIIAJIAPIbI
AHBIKTAYJA MAIIWHAJIBIK OKBITY AJITOPUTMAEPIH KOJIJAHY
HCITIOJB30BAHUE AJITOPUTMOB MAIIMHHOI'O OBYYEHUA JIS1 OBHAPYKEHUA
BPEJJOHOCHBIX IMPUJIOKEHUM HA IIJIAT®OPME ANDROID

Abstract. The work brings forward the methods for the application of the machine-learning algorithm in
identifying the presence of malicious programs on the Android platform. In the modern world, Android devices are the
most widely used and at the same time bring a great risk for other computer systems due to malicious attacks or
software opportunities. The traditional method for detecting malicious applications depends either on static and
dynamic analyses. However, conventional methods are already becoming ineffective since these codes have gradually
become so sophisticated. This challenge can be met through machine learning, whereby the Black Box is able to predict
with high accuracy potential malicious conduct patterns by analyzing target behavior applications.

Android malware detection importance is pegged on the rapidly evolving hostile applications that are readily
available in the Android Operating system. In this work, the authors present a comparison of three classifiers:
RandomForestClassifier, LGBMClassifier, and XGBClassifier using various preprocessing and sampling schemes so as
to achieve the novel goal of inter-class learning for malware detection. Our analysis shows that the best models are
obtained when using RobustScaler and SMOTE in conjunction with a RandomForestClassifier, since it generates more
accurate models and best results considering both precision and recall. The LGBMClassifier and XGBClassifier look
good, but they do not quite reach the same level of efficiency as the best-performing model, RandomForestClassifier.

It also points out that the present research underlines suitable preprocessing and sampling methods in order to
enhance model performance. The results make suggestions on the improvements that should be made in Machine
Learning systems targeting malware detection for further advancement of cybersecurity solutions.

Keywords: Android, Machine Learning Classifiers, RandomForestClassifier, LGBMClassifier, XGBClassifier,
Preprocessing Techniques, SMOTE Sampling, Model Performance Evaluation

Anoamna. Maxana Android niamgopmacvinoa 3uanovt 6ba20apramanraposbly OOIYbIH AHBIKMAYOAd MAWUHATBIK
OKbIMY ANOPUMMIH KOAOawy adicmepin anea mapmaovl. Kazipei anemoe Android xypuineviiapvl ey Kon
KOJIOAHbLIAMbIH KYPbLISbLIAp O0Nbln madvliadbvl HCaHe COHbIMeH Oipee 3usiHObl uabyvlioap Hemece 6a20apiamanviy
Jrcacakmama MymMKiHOIKmepine 6ailianblcmel 0ACKA KOMNbIOMEPIK Jcylenep YuiiH YaKen Kayin meuoipedi. 3usHovl
KOCLIMIUANAPObL AHLIKMAYObIH 02CMYPI 20iCi CMAMUKAIbIK HCIHe OUHAMUKANLIK mandaynapea baiianvicmel. Anaioa,
a0emmeei a0icmep Kazipoiy 63iH0e muimciz Ooavin Keneodi, eumxkeni Oy koomap 6ipminden dxcemindipiie 6acmaosi.
Byn maceneni mawunanvix, oxoimy apxuiiel wewyee 601aovl, Ouviy komezimen Kapa Kawix maxcammor mine3-Kynvlx
KO0aHOAapbln manday apKblivl bIKIMUMATL 3USAHObL MiHE3-KYAbIK YAcLAepi Hco2apbl 0an0iKneH O0oaicall anaoul.

Android 3usnovl 6az0apramanapviy aHbIKMayovly Mayvl3oblaviesl Android Onepayusnvlk scyiiecinoe oyail Ko
JHCemimMOl JHCLLIOAM OAMBIN Keae HCAMKAH OYUNanowlK Kordanbarapea baiianvicmul. Byn scymvicma asmopnap yut
Kaaccuguxamopovt canvicmulpyosl ycvinaovl. RandomForestClassifier, LGBMC Classifier ocone XGBClassifier 3usnowvi
basdapramanapobl AHLIKMAY YWiH HCAHA CHIHBINAPATLIK OKbIMY MAKCAMbIHA HCemy Yulin apmypai aiobin aia oHoey
Jicone  ipikmey cxemanapwin naudarana omuipvin. bizoiy mandayvimeiz Kepcemkenoeui, Ewy oicaxcol yneinep
RobustScaler )Kone SMOTE Konoanbanapwin Randomforest Kiaccuguxamopuvimen 6ipee naudananzan Kesoe
ANbIHAObL, OUMKeH i 011 0a10iKkmi Oe, ecke mycipyoi 0e eckepe omulpbin, 0dNipeK Yacinepoi JHCaHe HCAKCbl Homuoicenepol
acacaiiovl. LGBMClassifier ocone XGBClassifier exeyi de oicakcwl kopinedi, oipak onap Ey orcaxcwl scymvic icmeimin
randomforestclassifier yneicimen 6ipOeii muimoinix Oeneelline dxceme aimatiosl.

Conoaii-ax, byn 3epmmey Mo0enbOiy OHIMOILIZIH apmmbvlpy MAKCAMbIHOA AN0bIH Al 6HOey MeH ipikmeyoiy
Konailibl a0icmepin aman Kepcememinin kopcemeoi. Homuoicenep kubepkayincizoix wewimoepin 00am api ineepitemy
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Yuwiin 3uanowl bagoapiramaniapost anvikmayea davimmanean Mawunaneis Oxwuimy oacyiienepin scemindipy OouvlHuA
Ycwinvicmap 6epeoi.

Hezizei  coz0ep:  Android, Machine Learning  xaaccugpuxamopraper, RandomForestClassifier,
LGBMCclassifier, XGBClassifier, Preprocessing Techniques, SMOTE Sampling, Model Performance Evaluation

Annomayusn. B cmamve npedcmasienvl Memoovl NPUMEHEHUsl ANOPUMMA MAWUHHO20 00yUeHust O
BbIAGNEHUSL NPUCYINCMBUSL 8PEOOHOCHbIX npozpamm Ha niam@opme Android. B cospemennom mupe ycmpoiicmea Ha
baze Android ucnoavsyromes naubonee WUPOKO U 8 MO dce 6peMsi npeoCmagisom OONbulOU PUCK Olsl Opyeux
KOMNBIOMEPHBIX CUCTHEM U3-30 6PEOOHOCHBIX AMAK ULU 803MONCHOCHEN NPOSPAMMHO20 obecneuenust. Tpaduyuonnulil
MemoO 0OHapyscenus 6peOOHOCHBIX NPULOINCEHUL OCHOBAH KAK HA CINAMUYECKOM, MAK U HA OUHAMUYECKOM aHATU3e.
Oonaxo mpaouyuonnvie Memoobl yice CMAHOBAMCS HeIPHEeKMuUGHbIMY, NOCKOILKY MU KOObl NOCMENeHHO
CMAano8aAmcs 6ce boiee CIOHCHbIMU. Dma 3a0aua mMoxcem Obimb peuleHd ¢ NOMOWbI0 MAWUHHO20 00yYeHuUs, b1a200aps
xkomopomy "Yeprutii auuk" cnocoben ¢ 8b1COKOL MOYHOCHBIO NPEOCKA3bIBANb HOMEHYUANbHblEe MOOeNU 8PEOOHOCHO20
noGeOeHUsl, AHATUZUPYSL NOBEOCHUE YeNe6blX NPUTLONCEHUIL.

Baoicnocmv  06Hapyscenus gpedonocuvix npozpamm oaa Android ceéaszama ¢ 6vicmpo paszgUBArUWUMUCS
BDEOOHOCHBIMU NPUTIOJCEHUSIMU, KOMOpble JIe2K0 OOCMYNHbL 8 OnepayuoHHou cucmeme Android. B smou pabome
agmopvl  NpedCcmaesisAm cpasHeHue mpex Kiaccuguxamopos: RandomForestClassifier, LGBMClassifier u
XGBClassifier, ucnons3yrowux pasiuinsie cxemvl npedsapumenbHol 0opabomru u eblOOpKU, 4modbl 00CMUtb HOBOU
yem - MeXNCKIACco8020 00yyenusi Ois 0OHAPYICeHUs 6peOOHOCHbIX npoepamm. Haw ananus noxasvieaem, umo
Hauayuuwiue modenu noayiaromes npu ucnonvzosanuu RobustScaler u SMOTE 6 couemanuu ¢ RandomForestClassifier,
HOCKOIbKY OHU 2eHepupylom 6oiee mounble MOOeIU U OQiom HAULYHuUe pe3yibmanmsl KaxK ¢ MOYKY 3peHust MOYHOCMU,
max u ¢ mouku 3penus sanomunanus. LGBMClassifier u XGBClassifier eviensosm xopouio, HO OHU He QOCMUSAIOM
mo2o dice ypoeHsL dghpexmusnocmu, umo u Hauboaee sgppexmuenas modens RandomForestClassifier.

B nem maxoice ommeuaemcs, umo 6 HACMOSWEM UCCAEO08AHUL NOOUEPKUBAIOMCST NOOX0Osiuue Menmoobl
npeosapumenbHoll 00pabomku u 8bl00PKU OAHHBIX O/ NOBBIULEHU NPOU3BOOUmeNbHOCMU Modenu. B pesyremamax
cooepaicamest RPeododCeHUst NO YCOBEPUEHCIBOBAHUSIM, KOMOPble Cledyen GHeCmU 8 CUCEMbl MAWUHHO20 00YYeHuUsl,
HayeneHnble Ha 0OHApYIICeHUe BPEOOHOCHBIX NPOSPAMM, OISl OANbHEUUE20 COBEPUEHCIBOBAHUS PEeueHUll 6 0biacmu
KubepbeszonacHocmu.

Knruesvte cnosa: Android, knaccuguxamopvr  mawunnozo  obyuenus, RandomForestClassifier,
LGBMClassifier, XGBClassifier, memoObt  npedsapumenvhoi  obpabomku, evibopka SMOTE, oyenxa
npoU3800UMENLHOCIU MOOETU.

Introduction

The exponential growth in mobile technologies has completely changed the way people
interact with the digital world. Among several mobile operating systems, Android is the most
adopted platform and lays claim to a lion's share in the global market. Wide circulation and the
open nature of the Android ecosystem bring ample opportunities and challenges. While it has
enabled a great variety of applications and innovations, at the same time it has turned out to be an
attractive target for malicious actors to discover its vulnerabilities and compromise users' security.

The rapid proliferation of mobile devices and their applications is radically changing the
way in which people are communicating with one another, search for information, and perform a
task in daily life. Among them, Android-powered smartphones have dominated more than 70% of
market share among mobile operating systems worldwide. On the other hand, the openness and
ubiquity of the Android platform have also made it a perfect target for cybercriminals. For this
reason, malware in Android has emerged as one of the major security threats to date, posing critical
risks to users' privacy, data integrity, and financial security[1].

Android malware, which comes in a broad array of malicious software targeting Android
devices, has become a widespread and serious problem. The malware has a broad landscape,
including, but not limited to, adware, scareware, and SMS malware. Adware typically-used
applications that hard-sell advertisements to users often degrade both user experience and device
performance. Scareware, on the other side, is used as a psychological manipulator to instill fear in
coercing users to perform actions that are harmful, such as buying fake security software. SMS
malware, through text messaging, steals sensitive information or accrues unwanted charges. Each
malware type has its own way of deception to avoid its detection and carry out its nefarious goals.

Due to the phenomenal changes in malware techniques and advanced developments of
cyber-attacks, traditional signature-based methods for their detection are not effective. In a
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signature-based approach, predefined patterns of known malware are relied upon, and that is the
reason it misses novel or polymorphic variants [2]. That naturally leads to a shift and movement
towards behavior-based and data-driven detection mechanisms, especially in the related areas of
machine learning and artificial intelligence. These can theoretically allow the detection of zero-day
threats by analyzing the pattern and anomaly in the behavior and attributes of an application.

In this regard, the "Android_Malware.csv" dataset will go a long way in contributing to
malware detection research. Scraped from the Canadian Institute for Cybersecurity repository, this
dataset consists of 355,630 instances with four different labels, namely Android Adware, Android
Scareware, Android SMS Malware, and Benign applications. Each example/instance is described by
85 features, providing a wide view about characteristics and behaviors of both malicious and benign
applications.

First of all, the large volume of the dataset, along with its feature set, makes it possible to
investigate different detection methodologies deeply. Based on the given problem, a significant goal
of the research study is to extend this dataset with advanced model proposal and performance
evaluation for Android malware detection using machine learning. By trying various methods, from
traditional ones - including classic classifiers and ensemble methods to recent techniques based on
deep learning, we try to find the best way of distinguishing malware types from non-malicious
applications [3].

What is more, the intrinsic imbalance of the dataset-the fact that malicious instances are
much more than the benign instances-is a challenge that requires being carefully handled. We
consider these problems using techniques from data resampling and synthetic data generation,
among others; metrics relevant for performance evaluation in the presence of an imbalanced dataset
will also be explored.

We have contributed to the holistic review of various techniques of detection, assessed
various techniques for their effectiveness through an empirical experiment, and discuss implications
of our findings. We investigate strengths and limitations for a range of different approaches, gain
insights into the nature of Android malware, and provide recommendations for future research and
practical applications.

The bottom line is that, with the dynamically changing face of malware in Android devices,
innovative detection techniques are required to safeguard mobile users and to keep the integrity of
the Android ecosystem intact. We further hope that this research will help in bridging the gap in
knowledge of malware detection techniques and further assist in the development of more robust
and adaptive security solutions.

Since then, Android malware detection has gained rapid development in the last decade due
to the ever-increasing sophistication of malware and a proper security response to it. In this respect,
this paper will proceed with the literature review regarding the critical approaches, techniques, and
challenges in Android malware detection by focusing on traditional methods, behavior-based
approaches, and machine learning applications.

Traditional Methods of Detection

Detection of malware in Android operating systems was dependent on purely signature-
based solutions, wherein they relied on the identification of malware through app code or behaviors
by comparing with a database of known signatures. This is straightforward, simple, and works well
for known threats but fails with new or modified variants. Works like those in point out, in
particular how this technique fails in allowing the identification of zero-day threats or even of
polymorphic malware, that is, malware that intentionally modifies its code to evade detection[5].

Behavioural Analysis

A complementary approach, thought of as an alternative with respect to signature-based
methods for overcoming the weaknesses described above, is behaviour-based analysis.

It investigates and builds insights into the runtime behaviour of apps. This approach puts a
lot of emphasis on activities that are considered anomalous or suspicious against the characteristics

49



K. A. Acayu amuvinoazel Xanvlkapanvlk Ka3ax-mypik yHueepcumeminiyn, xaoapaapul
(mamemamuxa, puszuka, ungpopmamuxa cepusacwy), Ne4 (31), 2024

of normal behaviors. For example, [6] proposed a dynamic analysis framework using sandboxing
for monitoring app behaviors during execution and detecting the malicious ones by system call
patterns and sensitive data interactions. In, some other behavior-based detection system was
proposed which used runtime monitoring as a means to detect malware based on behavioral profile.
While these behavior-based methods guarantee better detection, the detrimental factors include
higher computational overhead and larger runtime analysis times. Additionally, behavior-based
methods have shown vulnerability to certain obfuscation techniques used by malware authors[7].

Machine Learning Approaches

It has been remarked that one of the landmarks in the Android malware arena has been
introducing machine learning into it. These machine learning models learn for themselves from the
data without any specific preprogrammed rules and define a pattern indicating malicious
behavior[8]. Works like decision trees, SVMs, and random forests have classified applications as
good or bad based on their features and behaviors[9].

Some of the major benefits of machine learning approaches are how easily they can be
adapted to new and evolving threats. Regarding this, in [10], several classifiers were combined
using ensemble methods to enhance robustness and accuracy in malware detection. Very recently,
several deep learning techniques were investigated in [11] using CNNs on app features and
behavior, which achieved state-of-the-art performance in malware classification.

However, even machine learning-based methods have their own challenges, which mainly
include the need for huge and diverse datasets that can sufficiently train models and address
challenges in data imbalance, feature selection, and model interpretability. The dataset used here is
"Android_Malware.csv." It is well4fone, hence providing a very good base to delve into these
challenges in detail and review different machine learning techniques.

Recent Trends and Advances

Over the last years, the development of Android malware detection has emerged with
various approaches combined to enhance the detection effectiveness and efficiency. Hybrid
methods that integrate both static and dynamic analysis with machine learning techniques bring
forth directions for overcoming certain limitations that have been the result of using individual
techniques. For example, [12] presented a hybrid framework, combining static feature extraction
and dynamic behavior analysis, with improved overall results of the detection performance.

In addition, there are the adversarial machine learning novelties testing the capability of
malware detection systems. In an adversarial attack, small perturbations are introduced into the
input data to mislead the model into incorrect classification that could result in misclassifying
malware as benign [13-14]. Different countermeasures and robust model training techniques are
also being considered by researchers in order to deal with this kind of attack.

The literature outlines both the advancement and challenges of detecting Android malware.
The traditional methods, behavior-based analysis, and machine learning approaches add to the
progress but need an integrating approach with a multi-techniqgue methodology to overcome their
own limitations. The current research will extend existing studies by exploring and evaluating
advanced methodologies for malware detection using the "Android_Malware.csv" dataset [15].

Methodolgy

The research work will systematically investigate the performance of various machine
learning algorithms on detecting Android malware. The "Android_Malware.csv" dataset will be
used to achieve this work by undertaking data preprocessing, model training, and evaluation to find
an effective classification technique on 355,630 instances categorized into four classes: Android
Adware, Android Scareware, Android SMS Malware, and Benign.

Data Preprocessing

The cleaning process first deals with the missing values, which are determined and imputed
using proper techniques wherever applicable, or the instance with a large amount of missing data is
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removed. The outlier detection helps in reducing the effect of anomalous data points on the model's
performance (Fig 1).
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Fig 1. Data preprocessing in the machine learning process.

Feature selection is used to enhance both the model's performance and explainability by
applying correlation analyses or mutual information scores. Further, only those features that are
highly correlated with the target variable are retained, while the rest that add minimum extra
information are dropped off. This helps in filtering in only the most relevant attributes for model
training.

It uses stratified sampling to divide the data into training and testing subsets while
preserving the distribution of original labels. This implies that 80% can be used for training and the
remaining 20% for testing. Stratification will help in each subset being representative of the diverse
class distributions present within the dataset.

Address the class imbalance inherent in the dataset to improve model performance. Apply
techniques for balancing the class distribution, including synthetic minority over-sampling
technique. Employ undersampling techniques with a view to reducing the number of instances of
the majority class. These methods will provide an improved generalization across all classes.

Model Training

RandomForestClassifier

The RandomForestClassifier is the ensemble method based on decision trees. Because of its
robustness, it can be used here and handle big feature spaces. It tunes some important
hyperparameters: the number of trees, maximum depth, and minimum samples per leaf using grid
search with cross-validation to find the best configuration for the classifier.

LGBMClassifier

The Light GBM Classifier is selected because of its efficiency in dealing with big datasets
comprising high-dimensional features. Performing hyperparameter tuning on parameters such as the
learning rate, boosting rounds, and maximum depth trains the model to utilize the full capacity of
LGBM's fast and efficient classification.

XGBClassifier

Extreme Gradient Boosting is employed here because of its high performance and flexibility
in model tuning. Some key hyperparameters-learninig rate, number of estimators, and maximum
depth-are optimized for the best classification accuracy of the classifier and its generalization. Its
training involves comprehensive cross-validation to ensure sound performance.
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The classifiers will be trained one by one with this preprocessed training dataset. During the
training phase, it also involves hyperparameter optimization by a grid search with k-fold cross-
validation to ensure the stability and performance of the models are validated against various
subsets of the training data.

Model Evaluation

Accuracy, precision, recall, F1-score, and ROC-AUC form a set of overall metrics which
will be used to measure the performance of the models. These metrics give a full-scale judgment
regarding each classifier's performance in terms of correct identification and categorization of
malware and benign applications.

Confusion matrices for each model have been created to give a detailed breakdown of the
classification results. This underlines the number of true positives, false positives, true negatives,
and false negatives, thereby making the performance evaluation in-depth with respect to all classes.

Comparatives have been done with RandomForestClassifier, LGBMCIassifier, and
XGBClassifier in order to choose the best model for malware detection in Android. Performances
will be compared by performance metrics to find out which of these classifiers will provide the
optimal balance of accuracy, precision, recall, and overall reliability.

Examples of such analyses leverage feature importance scores and SHAP values in the quest
to improve model result understanding. These techniques give meaning to the interpretability of
various features by explaining how much each feature contributes to the model's decisions, further
allowing insight into why certain factors drive malware classification.

Results

Results of experiments by RandomForestClassifier, LGBMClassifier, and XGBClassifier
using the "Android_Malware.csv" dataset are reported in this section. Further, each of these
classifiers is measured through accuracy, precision, recall, F1-score, and ROC-AUC metrics. Also,
the effects from data preprocessing and balancing techniques are discussed.

PR curves and their respective AP scores were further analyzed to look into the performance
of classifiers. These metrics give a more in-depth evaluation of how well the models can handle
class imbalances and, in turn, define boundaries between malware and benign applications
effectively.

Precision-Recall Curve

The Precision-Recall Curve provides one aspect of the evaluation methodologies for a
classifier, especially when dealing with unbalanced datasets. It plots the precision against the recall
at various thresholds to form a curve that depicts the trade-off between precision and recall for this
model (Fig 2).
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Fig 2. Precision-Recall Curve
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The Precision-Recall curve for the dummy classifier, drawn in dashed line, is the performance
of the dummy classifier in terms of precision versus recall. The Average Precision score is given on
the curve for this classifier. As might be expected from its simplicity, it has limited ability in
distinguishing malware from benign applications, as reflected in its lower AP score.

Precision of the optimized model: The Precision-Recall curve of the optimized model
normally comes higher than the dummy classifier's curve because of better performance. Its AP is
higher to show enhancement in the ability of finding malware instances with higher precision and
recall.

Precision and recall are computed using the precision_recall_curve function from
sklearn.metrics. This provides the curve using the probabilities of the prediction for each class.
Then, compute precision and recall at several thresholds using the probabilities derived from both
the dummy classifier and the optimized model.

This Average Precision score summarizes the precision-recall curve into a single scalar
value. The average_precision_score function calculates it, which is actually reflecting the area
under the precision-recall curve, as shown in Fig 3. Basically, higher AP scores indicate better
overall performances. Compared to the optimized model, the baseline dummy classifier has an AP
score of much lower, showing that the optimized model classified data more effectively.

Top 10 Most Important Features
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Fig 3. Feature Importance Analysis

To understand how different features may be influencing the predictions made by
RandomForestClassifier, we took a glance at the feature importances from the best model. The
feature importances derived from RandomForestClassifier tell about the extent to which each
feature has contributed to the classification.
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The following plot shows the top 10 features, ordered by their importance score: the
importance score of a feature represents its contribution relative to other features toward the model
performance in prediction.

The features whose values are more important help to outline the malware from the benign
applications. "Flow IAT" has the highest value, showing its importance to the model in making
such a prediction and how it is relevant in network-based analysis.

We have plotted the features 'Flow IAT Max' vs. 'Flow IAT Min' in an attempt to visualize
the importance of the key features for the classification task for the classes '‘Benign’ and ‘Malware".
Figure 4: Scatter plot of 'Flow IAT Max' and 'Flow IAT Min' for actual class labels.
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Fig 4. Feature Visualization

The following plot, created with the seaborn library, summarizes how 'Flow IAT Max' and
'Flow IAT Min' features change w.r.t. class labels. Color-coding the data points with respect to their
respective classes intuitively conveys feature importance and class separation. Prominent clusters
and overlapping regions from this scatter plot indicate the separation these features make between
benign and malicious applications. This analysis justifies the interpretation of model performance
and gives further underlining to the relevance of those features within malware detection.

Some of the main comparisons done between these various classifiers were based on some
cross-validated metrics such as F2 score, F1 score, recall, and precision. In this respect, each of the
classifiers was evaluated with different preprocessing techniques and samplers in order to learn
about its optimal configuration while in operation for Android malware detection (Table 1).
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Table 1: Classifier Performance Metrics

lassifier Preprocessor | Sampler | CV 2 CVFl | CV Recall cv
Score Precision
RandomForestClassifier | RobustScaler | SMOTE | 0.888826 | 0.890909 | 0.887476 | 0.894520
LGBMClassifier MinMaxScaler | SMOTE | 0.875125 | 0.881374 | 0.871266 | 0.892758
LGBMClassifier StandardScaler | SMOTE | 0.872793 | 0.879819 | 0.868495 | 0.892720
XGBClassifier StandardScaler | SMOTE | 0.866005 | 0.876265 | 0.860042 | 0.895837
RandomForestClassifier | StandardScaler | SMOTE | 0.865381 | 0.875577 | 0.859423 | 0.894954
XGBClassifier RobustScaler | SMOTE | 0.863801 | 0.873708 | 0.857919 | 0.892309
LGBMClassifier RobustScaler | SMOTE | 0.852035 | 0.865657 | 0.844230 | 0.891837
RandomForestClassifier | MinMaxScaler | SMOTE | 0.851265 | 0.865473 | 0.843227 | 0.892996
XGBClassifier MinMaxScaler | SMOTE | 0.849302 | 0.864674 | 0.840901 | 0.895032

The best performance by a model, in terms of evaluation for the F2 score, was done by
RandomForestClassifier with RobustScaler and SMOTE at 0.8888, which results in a very good
balance between precision and recall. This setup also produced the highest F1 score of 0.8909,
showing, in essence, robust performance on both classes. Recall and precision values are 0.8875
and 0.8945, respectively, for this setup.

Its closest competitor was the use of LGBMClassifier implemented in conjunction with
MinMaxScaler and SMOTE at 0.8751. Coming somewhat off from that top performer, the model
generated by RandomForestClassifier reached an excellent score of 0.8814 and a highly respectable
precision at 0.8928.

Whereas other combinations involving XGBClassifier with StandardScaler and SMOTE,
together with RandomForestClassifier with StandardScaler and SMOTE, were equally good but
only just took the backseat compared to the above two. Generally, the settings of XGBClassifier
had high precision but low recall, while setting LGBMClIassifier had a better balance but slightly
low overall score.

Ultimately, analyses show that the best, most balanced, and efficient performance in the
detection of malware in Android, considering all studied metrics, is provided by
RandomForestClassifier combined with RobustScaler and SMOTE.

Conclusion

This article presents an in-depth study of various machine learning classifiers on Android
malware detection by analyzing their performance with different preprocessing techniques and
sampling methods. Based on this, different models were assessed to choose the best among them to
identify malicious and benign applications from a highly imbalanced dataset.

The best combination derived is RandomForestClassifier with RobustScaler and SMOTE.
Giving the best F2 score of 0.8888, it also showed balanced performance in precision and recall. A
very similar F1 score of 0.8909 emphasizes that this model is very robust and consistent in
maintaining the performance balance of both classes. A recall of 0.8875 and a precision of 0.8945
prove this setting is outstanding in the minimization of both false negatives and false positives,
offering the best reliability in malware detection.

Comparing the results with other models-LGBMClassifier and XGBClassifier-it turned out
that in spite of the fact that those other classifiers did a great job, none of them outperformed the
RandomForestClassifier when looking at the whole picture. The other nice performance was given
by LGBMClassifier with MinMaxScaler and SMOTE with an F1 score of 0.8814 and a precision of
0.8928, though a bit lower in F2 score. Similarly, all the settings of XGBClassifier showed very
great accuracy but were somewhat less efficient on recall compared to the best setting presented by
RandomForestClassifier.
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These findings emphasize how preprocessing techniques and the ways of sampling play a
crucial role in model performance optimization. RobustScaler and SMOTE proved to be an
important aid in powerfully enhancing the capabilities of the RandomForestClassifier in malware
detection. This further justifies the fact that choosing appropriate classifiers is not enough, but
rather refining preprocessing and sampling plays an important role in handling class imbalances and
enhancing accuracy in the sphere of detection.

It provides the basis for further work to be done on malware detection. Further research
could therefore involve more techniques of model optimization, more advanced feature engineering
techniques, and adaptation to new malware variants which may emerge. Above avenues would,
therefore, always be in need to develop more resilient and adaptive malware detection systems with
ever-changing digital world aspects.

Hence, this research work presents the fact that a properly selected combination of
classifiers, preprocessing techniques, and sampling methods may achieve dramatic improvements in
malware detection performance. Thus, a robust solution is proposed by RandomForestClassifier
combined with RobustScaler and SMOTE for a well-balanced approach in identifying malicious
activities with minimal errors for improving useful insights into future research and practical
applications in cybersecurity.
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